DIPLOMA IN ADVANCED COMPUTER SCIENCE & ENGINEERING

Distance Education Program

Acharya Nagarjuna University

COMPLETE SYLLABUS

[bookmark: DIPLOMA_IN_ADVANCED_COMPUTER_SCIENCE___E]DIPLOMA IN ADVANCED COMPUTER SCIENCE & ENGINEERING
Distance Education Program
Acharya Nagarjuna University
PROGRAM OVERVIEW
Program Name: Diploma in Advanced Computer Science & Engineering
Mode: Distance Education
Duration: 1 Year (2 Semesters)
Total Credits: 35 Credits
Affiliated University: Acharya Nagarjuna University
OBJECTIVE OF THE DIPLOMA
The primary goal of the Diploma in Advanced Computer Science and Engineering is to provide real-time industry learning experiences, giving learners access to international industry experts and opportunities to work on real-world industry challenges. The program bridges the gap between academic knowledge and industry requirements by emphasizing hands-on learning, modern development practices, and enterprise-grade tools and technologies.
PROGRAM LEARNING OUTCOMES (PLOs)
Upon successful completion of this diploma, learners will be able to:
Apply computational thinking and problem-solving techniques to develop efficient algorithms and programs
Design and implement data structures for optimal storage, retrieval, and manipulation of data
Develop enterprise-grade applications using modern frameworks like Spring Boot and Flask
Manage and integrate enterprise data sources including relational and NoSQL databases
Implement agile methodologies and DevOps practices in software development lifecycle
Deploy and manage applications on cloud platforms
Work collaboratively on real-world industry projects demonstrating professional competencies
SEMESTER-WISE COURSE STRUCTURE
SEMESTER 1: FOUNDATION & FUNDAMENTALS
	S.No
	Course Code
	Course Title
	Credits

	1
	DACSE101
	Computer Programming with Problem Solving (Java/Python)
	3

	2
	DACSE102
	Computer Programming Lab
	2

	3
	DACSE103
	Data Structures & Algorithms
	3

	4
	DACSE104
	Data Structures & Algorithms Lab
	2

	5
	DACSE105
	Agile Product Management
	3

	6
	DACSE106
	Capstone Project 1
	3

	
	
	SEMESTER 1 TOTAL
	16

SEMESTER 2: ADVANCED & ENTERPRISE TECHNOLOGIES
	S.No
	Course Code
	Course Title
	Credits

	1
	DACSE201
	Advanced Computer Programming Tools
	3

	2
	DACSE202
	Advanced Computer Programming Tools Lab
	2

	3
	DACSE203
	Enterprise Data Sources & Concepts
	3

	4
	DACSE204
	Enterprise Data Management Lab
	2

	5
	DACSE205
	Advanced Enterprise Automation Process
	3

	6
	DACSE206
	Capstone Project 2
	6

	
	
	SEMESTER 2 TOTAL
	19

COURSE DESCRIPTIONS
SEMESTER 1 COURSES
DACSE101: Computer Programming with Problem Solving (Java/Python) – 3 Credits
This course introduces computational thinking and programming fundamentals using Java and Python. Students learn to analyze problems, design algorithms, and implement solutions using industry-standard programming practices.
DACSE102: Computer Programming Lab – 2 Credits
Hands-on laboratory course complementing DACSE101. Students implement various programs covering basic to intermediate programming concepts, reinforcing theoretical knowledge through practical application.
DACSE103: Data Structures & Algorithms – 3 Credits
Comprehensive study of fundamental data structures (arrays, linked lists, stacks, queues, trees, graphs) and algorithms (searching, sorting, recursion). Emphasis on algorithm analysis, complexity, and choosing appropriate data structures for problem-solving.
DACSE104: Data Structures & Algorithms Lab – 2 Credits
Laboratory course for implementing data structures and algorithms. Students gain hands-on experience in designing, implementing, and analyzing various data structures and algorithmic techniques.
DACSE105: Agile Product Management – 3 Credits
Introduction to agile methodologies, Scrum framework, product backlog management, sprint planning, and agile project management tools. Students learn to work in agile environments and manage software development projects effectively.
DACSE106: Capstone Project 1 – 3 Credits
Mini-project applying Semester 1 concepts. Students work on a complete software development project from requirements gathering to deployment, demonstrating mastery of programming, data structures, and agile practices.
SEMESTER 2 COURSES
DACSE201: Advanced Computer Programming Tools – 3 Credits
Deep dive into enterprise development frameworks and tools. Covers Spring Boot for Java-based enterprise applications, Python Flask for web services, Maven/Gradle for build automation, and Git for version control. Students learn to build production-ready applications.
DACSE202: Advanced Computer Programming Tools Lab – 2 Credits
Hands-on implementation of enterprise applications using Spring Boot and Flask. Students build RESTful APIs, microservices, and web applications with proper architecture, testing, and documentation.
DACSE203: Enterprise Data Sources & Concepts – 3 Credits
Comprehensive coverage of enterprise data management including relational databases (MySQL, PostgreSQL) and NoSQL databases (MongoDB, Redis). Focus on database design, SQL mastery, document databases, in-memory data stores, and choosing the right database for specific use cases.
DACSE204: Enterprise Data Management Lab – 2 Credits
Practical implementation of database design, SQL queries, NoSQL operations, and data integration. Students work with real-world datasets and implement complete data management solutions.
DACSE205: Advanced Enterprise Automation Process – 3 Credits
Modern DevOps practices including CI/CD pipelines with GitHub Actions, containerization with Docker, and cloud deployment on Google Cloud Platform (GCP). Students learn to automate build, test, and deployment processes for production applications.
DACSE206: Capstone Project 2 – 6 Credits
Comprehensive industry-grade project integrating all Semester 2 concepts. Students develop a complete enterprise application with proper architecture, data management, CI/CD pipeline, and cloud deployment. Projects are mentored by industry experts.
KEY TECHNOLOGIES COVERED
Semester 1
Programming Languages: Java, Python | Data Structures: Arrays, Linked Lists, Stacks, Queues, Trees, Graphs | Algorithms: Sorting, Searching, Recursion | Agile: Scrum, Kanban, User Stories, Sprint Planning
Semester 2
Frameworks: Spring Boot, Flask | Build Tools: Maven, Gradle, pip | Databases: MySQL, PostgreSQL, MongoDB, Redis | DevOps: Git, Docker, GitHub Actions, CI/CD | Cloud: Google Cloud Platform (GCP) | API Development: REST, Swagger/OpenAPI

[bookmark: DACSE101__COMPUTER_PROGRAMMING_WITH_PROB]DACSE101: COMPUTER PROGRAMMING WITH PROBLEM SOLVING (JAVA/PYTHON)
Diploma in Advanced Computer Science & Engineering
Acharya Nagarjuna University – Distance Education Program
Course Code: DACSE101
Course Title: Computer Programming with Problem Solving (Java/Python)
Credits: 3
Semester: 1
Prerequisites: Basic Mathematical Aptitude
COURSE OBJECTIVES
To introduce the fundamentals of computational thinking and problem-solving approaches
To teach programming concepts using Java and Python programming languages
To develop skills in designing algorithms and implementing solutions
To enable students to write efficient, readable, and maintainable code
To build a strong foundation for advanced programming concepts
COURSE OUTCOMES (COs)
Upon completion of this course, students will be able to:
	CO
	Description
	Bloom's Level

	CO1
	Apply computational thinking to analyze and decompose problems
	Apply

	CO2
	Design algorithms using appropriate notations (pseudo code, flowcharts)
	Create

	CO3
	Implement programs using control structures and functions in Java/Python
	Apply

	CO4
	Utilize object-oriented programming concepts for modular code design
	Apply

	CO5
	Debug and test programs to ensure correctness and efficiency
	Analyze

DETAILED SYLLABUS
UNIT I: COMPUTATIONAL THINKING AND PROBLEM SOLVING
Introduction to Computational Thinking – Fundamentals of Computing – History and Evolution of Computers – Identification of Computational Problems – Problem Analysis Techniques – Components of a Computer System – Hardware and Software Overview – Introduction to Programming Languages – Compiled vs Interpreted Languages.
Algorithms and Problem Solving – Definition and Characteristics of Algorithms – Building Blocks of Algorithms: Statements and Expressions, State and Variables, Control Flow Mechanisms, Functions and Procedures – Algorithm Notations: Pseudo Code (Syntax and Conventions), Flow Charts (Symbols and Drawing Techniques), Programming Language Representation – Algorithmic Problem-Solving Strategies: Sequential Approach, Iterative Approach, Recursive Approach – Introduction to Algorithm Complexity (Time and Space).
Illustrative Problems: Find the minimum element in a list of numbers; Find the maximum element in a list of numbers; Insert a card in a list of sorted cards (insertion concept); Guess an integer number in a given range (binary search concept); Towers of Hanoi – Recursive problem solving.
UNIT II: PROGRAMMING FUNDAMENTALS – VARIABLES, OPERATORS & CONTROL FLOW
Introduction to Programming Environment – Setting up Development Environment (IDE: Eclipse/PyCharm/VS Code) – Writing, Compiling, and Executing First Program – Understanding the Structure of Java and Python Programs – Comments, Documentation, and Code Readability.
Variables and Data Types – Identifiers (Naming Conventions and Rules) – Variables (Declaration, Initialization, and Assignment) – Primitive Data Types: Numeric Types (int, float, double, long), Character Type (char, String basics), Boolean Type (true/false) – Type Conversion (Implicit and Explicit Casting) – Constants and Literals.
Operators and Expressions – Arithmetic Operators (+, -, , /, %, //,) – Relational/Comparison Operators (==, !=, <, >, <=, >=) – Logical Operators (AND, OR, NOT) – Assignment Operators (=, +=, -=, =, /=) – Bitwise Operators (&, |, ^, ~, <<, >>) – Operator Precedence and Associativity – Expression Evaluation.
Control Flow Statements – Conditional Statements: if statement, if-else statement, if-elif-else (Python) / if-else if-else (Java), Nested if statements, switch-case (Java) / match-case (Python 3.10+) – Looping Statements: while loop, do-while loop (Java), for loop (Traditional and Enhanced), for-each loop, Nested loops – Jump Statements: break, continue, pass (Python).
Illustrative Problems: Calculate simple and compound interest; Check if a number is even or odd; Find the largest among three numbers; Calculate factorial of a number using loop; Print multiplication table of a given number; Check if a number is prime; Print Fibonacci series up to n terms; Sum of digits of a number; Reverse a number; Check if a number is palindrome.
UNIT III: FUNCTIONS, ARRAYS, AND STRINGS
Functions/Methods – Introduction to Modular Programming – Function Definition and Declaration – Function Parameters and Arguments – Passing Arguments: Pass by Value, Pass by Reference – Return Values and Return Types – Function Overloading (Java) – Default and Keyword Arguments (Python) – Variable Scope (Local, Global, and Block Scope) – Recursion: Base Case and Recursive Case, Recursive Function Examples, Recursion vs Iteration – Lambda Functions (Anonymous Functions).
Arrays/Lists – Introduction to Arrays (Need and Definition) – Array Declaration and Initialization – Accessing Array Elements (Indexing) – Array Traversal using Loops – Multi-dimensional Arrays (2D Arrays/Matrices) – Common Array Operations: Insertion, Deletion, Searching, Sorting (Bubble Sort, Selection Sort) – Python Lists (Dynamic Arrays) – List Methods and Operations – List Comprehensions (Python).
Strings – String Declaration and Initialization – String Immutability Concept – String Operations: Concatenation, Comparison, Slicing and Indexing – String Methods: length()/len(), substring()/slicing, indexOf()/find(), replace(), split() and join(), upper(), lower(), capitalize() – String Formatting.
Illustrative Problems: Calculate factorial using recursive function; Find GCD of two numbers using recursion; Binary search using recursion; Find the sum of elements in an array; Find the largest and smallest element in an array; Sort an array using bubble sort; Matrix addition and multiplication; Count vowels and consonants in a string; Check if a string is palindrome; Reverse words in a sentence; Find frequency of characters in a string; Remove duplicates from a list.
UNIT IV: OBJECT-ORIENTED PROGRAMMING
Introduction to OOP – Programming Paradigms (Procedural vs Object-Oriented) – Principles of Object-Oriented Programming – Advantages of OOP (Reusability, Modularity, Maintainability).
Classes and Objects – Class Definition (Attributes and Methods) – Creating Objects (Instantiation) – Constructors: Default Constructor, Parameterized Constructor, Constructor Overloading (Java), __init__ method (Python) – Instance Variables vs Class Variables – Instance Methods vs Class Methods vs Static Methods – The 'this' keyword (Java) / 'self' reference (Python) – Destructor and Garbage Collection.
Encapsulation – Data Hiding Concept – Access Modifiers: public, private, protected (Java), Name Mangling (Python) – Getter and Setter Methods – Properties (Python).
Inheritance – Concept of Inheritance (IS-A Relationship) – Types of Inheritance: Single Inheritance, Multilevel Inheritance, Hierarchical Inheritance, Multiple Inheritance (Python) – Method Overriding – super keyword / super() function – Abstract Classes and Methods.
Polymorphism – Compile-time Polymorphism (Method Overloading) – Runtime Polymorphism (Method Overriding) – Duck Typing (Python).
Illustrative Problems: Create a class representing a Student with attributes and methods; Implement a BankAccount class with deposit and withdraw operations; Create a Calculator class with overloaded methods for different data types; Implement inheritance (Shape → Rectangle, Circle, Triangle); Create an Employee management system with different employee types; Design a Library Management System with Book and Member classes; Implement a simple Shopping Cart with Product and Cart classes; Create an Animal hierarchy demonstrating polymorphism.
UNIT V: EXCEPTION HANDLING AND FILE OPERATIONS
Exception Handling – Introduction to Errors and Exceptions – Types of Errors: Syntax Errors, Runtime Errors (Exceptions), Logical Errors – Exception Hierarchy – Handling Exceptions: try-catch block (Java) / try-except block (Python), Multiple catch/except blocks, finally block, try-with-resources (Java) / with statement (Python) – Throwing Exceptions (throw/raise) – Creating Custom Exceptions – Best Practices in Exception Handling.
File Handling – Introduction to File Operations – Types of Files (Text Files and Binary Files) – File Opening Modes (Read, Write, Append) – Reading from Files: read(), readline(), readlines(), Reading character by character, Reading line by line – Writing to Files: write(), writelines() – File Pointer and Seeking – Closing Files (Importance and Methods) – Working with CSV Files – Working with JSON Files.
Introduction to Modules and Packages – Built-in Modules – Creating Custom Modules – Importing Modules – Package Structure (Python) – pip and Package Management.
Illustrative Problems: Handle division by zero exception; Handle array index out of bounds exception; Create a custom exception for invalid age input; Read contents of a text file and display line count, word count; Copy contents from one file to another; Write student records to a file and read them back; Read a CSV file and calculate statistics (sum, average); Store and retrieve student information in JSON format; Implement a simple log file system; Create a program to merge multiple text files.
TEXTBOOKS
Herbert Schildt, "Java: The Complete Reference", 11th Edition, McGraw Hill, 2019
Cay S. Horstmann, "Core Java Volume I – Fundamentals", 11th Edition, Pearson, 2018
Mark Lutz, "Learning Python", 5th Edition, O'Reilly Media, 2013
Eric Matthes, "Python Crash Course", 3rd Edition, No Starch Press, 2023

[bookmark: DACSE102__COMPUTER_PROGRAMMING_LAB]DACSE102: COMPUTER PROGRAMMING LAB
Diploma in Advanced Computer Science & Engineering
Acharya Nagarjuna University – Distance Education Program
Course Code: DACSE102
Course Title: Computer Programming Lab
Credits: 2
Semester: 1
Prerequisites: DACSE101 (Co-requisite)
COURSE OBJECTIVES
To provide hands-on experience in programming using Java and Python
To reinforce theoretical concepts through practical implementation
To develop debugging and testing skills
To encourage problem-solving through coding exercises
To prepare students for real-world programming challenges
COURSE OUTCOMES (COs)
Upon completion of this course, students will be able to:
	CO
	Description
	Bloom's Level

	CO1
	Set up development environment and write basic programs
	Apply

	CO2
	Implement programs using control structures effectively
	Apply

	CO3
	Design and implement functions for modular programming
	Apply

	CO4
	Develop programs using object-oriented concepts
	Create

	CO5
	Handle files and exceptions in programs
	Apply

LIST OF EXPERIMENTS
CYCLE 1: BASIC PROGRAMMING
Experiment 1: Environment Setup and Basic Programs – Install and configure Java JDK and Python interpreter – Write programs to display output and accept user input – Perform basic arithmetic operations.
Experiment 2: Variables, Data Types, and Operators – Swap two numbers with and without temporary variable – Calculate area and perimeter of geometric shapes – Convert temperature between Celsius and Fahrenheit – Calculate simple and compound interest.
Experiment 3: Conditional Statements – Check if a number is positive, negative, or zero – Find the largest among three numbers – Check leap year – Calculate grade based on marks – Menu-driven calculator.
Experiment 4: Looping Statements – Print multiplication table – Find factorial of a number – Check if a number is prime – Print Fibonacci series – Check Armstrong number – Print star patterns (pyramid, diamond).
CYCLE 2: FUNCTIONS AND ARRAYS
Experiment 5: Functions/Methods – Calculate factorial using iteration and recursion – Find GCD and LCM of two numbers – Implement prime check function – Demonstrate function overloading (Java) – Use default and keyword arguments (Python).
Experiment 6: Arrays and Lists – Find largest and smallest element in an array – Calculate sum and average of array elements – Implement linear and binary search – Sort array using bubble sort and selection sort – Perform matrix operations (addition, multiplication, transpose).
Experiment 7: Strings – Count vowels, consonants, and spaces in a string – Check if a string is palindrome – Reverse a string (character-wise and word-wise) – Find frequency of each character – Check if two strings are anagrams.
CYCLE 3: OBJECT-ORIENTED PROGRAMMING
Experiment 8: Classes and Objects – Create Student class with attributes and methods – Implement BankAccount class with deposit and withdraw operations – Create Rectangle class with area and perimeter methods – Demonstrate constructor overloading.
Experiment 9: Inheritance – Create Shape class hierarchy (Shape → Rectangle, Circle, Triangle) – Implement Employee hierarchy (Employee → Manager, Developer) – Demonstrate multilevel inheritance – Demonstrate method overriding.
Experiment 10: Polymorphism – Demonstrate method overloading with Calculator class – Implement polymorphism with Animal → Dog, Cat classes – Demonstrate runtime polymorphism with interface/abstract class.
CYCLE 4: EXCEPTION HANDLING AND FILES
Experiment 11: Exception Handling – Handle ArithmeticException for division by zero – Handle ArrayIndexOutOfBoundsException – Create and throw custom exceptions – Demonstrate finally block and resource cleanup.
Experiment 12: File Handling – Create and write data to a text file – Read contents of a file and display statistics – Copy contents from one file to another – Read/write CSV files – Read/write JSON files.
MINI PROJECT
Develop a comprehensive application applying all concepts: Student Management System, Library Management System, Banking Application, Quiz Application, or Inventory Management System.
TEXTBOOKS
Herbert Schildt, "Java: The Complete Reference", 11th Edition, McGraw Hill, 2019
Mark Lutz, "Learning Python", 5th Edition, O'Reilly Media, 2013

[bookmark: DACSE103__DATA_STRUCTURES___ALGORITHMS]DACSE103: DATA STRUCTURES & ALGORITHMS
Diploma in Advanced Computer Science & Engineering
Acharya Nagarjuna University – Distance Education Program
Course Code: DACSE103
Course Title: Data Structures & Algorithms
Credits: 3
Semester: 1
Prerequisites: DACSE101 – Computer Programming with Problem Solving
COURSE OBJECTIVES
To understand the importance of data organization in computing
To learn various linear and non-linear data structures
To analyze and compare algorithms based on time and space complexity
To develop skills in selecting appropriate data structures for specific problems
To master searching, sorting, and graph algorithms
COURSE OUTCOMES (COs)
Upon completion of this course, students will be able to:
	CO
	Description
	Bloom's Level

	CO1
	Analyze algorithms for time and space complexity using asymptotic notations
	Analyze

	CO2
	Implement linear data structures (arrays, linked lists, stacks, queues)
	Apply

	CO3
	Design and implement tree and graph data structures
	Create

	CO4
	Apply appropriate searching and sorting algorithms for given problems
	Apply

	CO5
	Choose optimal data structures for real-world problem solving
	Evaluate

DETAILED SYLLABUS
UNIT I: INTRODUCTION TO DATA STRUCTURES AND ALGORITHM ANALYSIS
Introduction to Data Structures – Definition and Need for Data Structures – Classification of Data Structures: Primitive vs Non-Primitive, Linear vs Non-Linear, Static vs Dynamic – Abstract Data Types (ADT) – Data Structure Operations: Traversal, Search, Insert, Delete, Update, Sort, Merge.
Algorithm Analysis – Definition of Algorithm – Characteristics of a Good Algorithm – Algorithm Design Techniques Overview – Performance Analysis: Time Complexity, Space Complexity – Asymptotic Notations: Big O Notation (O) – Upper Bound, Omega Notation (Ω) – Lower Bound, Theta Notation (Θ) – Tight Bound, Little o and Little ω Notations – Best Case, Worst Case, and Average Case Analysis – Common Time Complexities: O(1), O(log n), O(n), O(n log n), O(n²), O(2ⁿ).
Recursion – Recursive Algorithms and Recurrence Relations – Solving Recurrence Relations: Substitution Method, Master Theorem – Tail Recursion and Optimization – Recursion vs Iteration (Trade-offs).
Illustrative Problems: Calculate time complexity of simple loops and nested loops; Analyze complexity of recursive Fibonacci algorithm; Compare iterative vs recursive factorial – complexity analysis; Derive time complexity using Master Theorem for divide-and-conquer algorithms; Analyze space complexity of recursive vs iterative solutions.
UNIT II: LINEAR DATA STRUCTURES – ARRAYS, LINKED LISTS
Arrays – Array Representation in Memory – One-dimensional Arrays – Multi-dimensional Arrays (Row-major and Column-major Order) – Address Calculation in Arrays – Sparse Matrices (Array and Linked Representation) – Dynamic Arrays: ArrayList (Java), List (Python) – Array Operations and Complexity Analysis.
Linked Lists – Introduction to Linked Lists – Advantages over Arrays – Types of Linked Lists: Singly Linked List, Doubly Linked List, Circular Linked List, Circular Doubly Linked List – Operations on Linked Lists: Traversal, Insertion (Beginning, End, Middle), Deletion (Beginning, End, Middle), Searching, Reversing – Header Linked Lists – Polynomial Representation using Linked Lists – Comparison: Arrays vs Linked Lists.
Applications of Linked Lists – Implementing Stacks and Queues – Polynomial Addition and Multiplication – Sparse Matrix Representation – Memory Management (Free List).
Illustrative Problems: Find middle element of a linked list (Floyd's algorithm); Detect and remove loop in a linked list; Reverse a linked list (iterative and recursive); Merge two sorted linked lists; Add two polynomials represented as linked lists; Implement a sparse matrix using linked list; Find nth node from end of linked list.
UNIT III: STACKS AND QUEUES
Stacks – Stack ADT (Definition and Operations) – Stack Implementation: Array-based Implementation, Linked List Implementation – Operations: push(), pop(), peek(), isEmpty(), isFull() – Overflow and Underflow Conditions – Applications of Stacks: Expression Evaluation and Conversion (Infix to Postfix Conversion, Infix to Prefix Conversion, Postfix Evaluation, Prefix Evaluation), Parenthesis Matching, Function Call Management (Call Stack), Backtracking Algorithms, Undo Mechanism in Editors.
Queues – Queue ADT (Definition and Operations) – Queue Implementation: Array-based Implementation, Linked List Implementation – Operations: enqueue(), dequeue(), front(), rear(), isEmpty(), isFull() – Types of Queues: Simple Queue / Linear Queue, Circular Queue (Overcoming limitations), Double-ended Queue (Deque), Priority Queue – Applications of Queues: CPU Scheduling, Print Spooling, Breadth-First Search (BFS), Buffer Management.
Illustrative Problems: Implement stack using arrays with all operations; Implement stack using linked list; Convert infix expression to postfix; Evaluate postfix expression; Check balanced parentheses in an expression; Implement circular queue with all operations; Implement priority queue using heap; Implement two stacks in a single array; Design a min-stack (get minimum in O(1)); Implement queue using two stacks.
UNIT IV: TREES
Introduction to Trees – Tree Terminology: Root, Parent, Child, Sibling, Leaf, Height, Depth, Level – Binary Trees: Full Binary Tree, Complete Binary Tree, Perfect Binary Tree, Skewed Binary Tree – Binary Tree Representation: Array Representation, Linked Representation – Binary Tree Traversals: Inorder (Left-Root-Right), Preorder (Root-Left-Right), Postorder (Left-Right-Root), Level Order (Breadth-First) – Construction of Binary Tree from Traversals.
Binary Search Trees (BST) – BST Properties – BST Operations: Search, Insertion, Deletion (Leaf, One Child, Two Children) – Inorder Successor and Predecessor – BST Complexity Analysis.
Balanced Trees – Need for Balanced Trees – AVL Trees: Balance Factor, Rotations (LL, RR, LR, RL), Insertion and Deletion in AVL Trees – Introduction to Red-Black Trees (Concepts only) – Introduction to B-Trees and B+ Trees (Concepts only).
Heap – Heap Properties (Max Heap and Min Heap) – Heap Representation using Array – Heap Operations: Insert, Delete, Heapify – Building Heap from Array – Heap Sort Algorithm – Priority Queue using Heap.
Illustrative Problems: Implement binary tree with all traversals; Construct binary tree from inorder and preorder traversals; Find height/depth of a binary tree; Check if a binary tree is BST; Find Lowest Common Ancestor (LCA) in BST; Implement AVL tree with rotations; Implement max heap and heap sort; Convert BST to balanced BST; Level order traversal in reverse; Find diameter of a binary tree.
UNIT V: GRAPHS, SEARCHING AND SORTING
Graphs – Graph Terminology: Vertex, Edge, Degree, Path, Cycle – Types of Graphs: Directed and Undirected, Weighted and Unweighted, Connected and Disconnected, Cyclic and Acyclic – Graph Representations: Adjacency Matrix, Adjacency List, Edge List – Graph Traversals: Breadth-First Search (BFS), Depth-First Search (DFS) – Applications: Shortest Path Algorithms (Dijkstra's Algorithm, Bellman-Ford Algorithm), Minimum Spanning Tree (Prim's Algorithm, Kruskal's Algorithm), Topological Sorting.
Searching Algorithms – Linear Search (Algorithm and Analysis) – Binary Search (Algorithm and Analysis) – Interpolation Search – Jump Search – Exponential Search – Comparison of Searching Algorithms.
Sorting Algorithms – Classification of Sorting Algorithms – Comparison-based Sorting: Bubble Sort, Selection Sort, Insertion Sort, Merge Sort (Divide and Conquer), Quick Sort (Divide and Conquer), Heap Sort – Non-comparison Sorting: Counting Sort, Radix Sort, Bucket Sort – Stability in Sorting – Comparison of Sorting Algorithms – Lower Bound for Comparison-based Sorting: O(n log n).
Hashing – Introduction to Hashing – Hash Functions – Collision Resolution Techniques: Open Addressing (Linear Probing, Quadratic Probing, Double Hashing), Separate Chaining – Load Factor and Rehashing – Applications of Hashing.
Illustrative Problems: Implement BFS and DFS for graph traversal; Find shortest path using Dijkstra's algorithm; Implement Prim's algorithm for MST; Implement topological sort; Implement binary search (iterative and recursive); Implement merge sort with analysis; Implement quick sort with different pivot strategies; Implement heap sort; Implement counting sort for limited range; Design a hash table with collision handling.
TEXTBOOKS
Ellis Horowitz, Sartaj Sahni, Susan Anderson-Freed, "Fundamentals of Data Structures in C", 2nd Edition, Universities Press, 2008
Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, "Introduction to Algorithms", 3rd Edition, MIT Press, 2009
Mark Allen Weiss, "Data Structures and Algorithm Analysis in Java", 3rd Edition, Pearson, 2012

[bookmark: DACSE104__DATA_STRUCTURES___ALGORITHMS_L]DACSE104: DATA STRUCTURES & ALGORITHMS LAB
Diploma in Advanced Computer Science & Engineering
Acharya Nagarjuna University – Distance Education Program
Course Code: DACSE104
Course Title: Data Structures & Algorithms Lab
Credits: 2
Semester: 1
Prerequisites: DACSE103 (Co-requisite)
COURSE OBJECTIVES
To implement various linear and non-linear data structures
To practice algorithm design and analysis through hands-on coding
To develop proficiency in solving complex problems using appropriate data structures
To gain experience in writing efficient and optimized code
To prepare students for technical interviews and competitive programming
COURSE OUTCOMES (COs)
Upon completion of this course, students will be able to:
	CO
	Description
	Bloom's Level

	CO1
	Implement linear data structures with all operations
	Apply

	CO2
	Develop programs for stack and queue applications
	Apply

	CO3
	Implement tree data structures and traversal algorithms
	Apply

	CO4
	Code graph algorithms for real-world problems
	Create

	CO5
	Implement and analyze various searching and sorting algorithms
	Analyze

LIST OF EXPERIMENTS
CYCLE 1: LINEAR DATA STRUCTURES
Experiment 1: Array Operations – Implement array operations (insert, delete, search, update) – Implement linear search and binary search – Rotate an array by k positions.
Experiment 2: Singly Linked List – Create singly linked list with insert operations (beginning, end, position) – Implement delete operations (beginning, end, by value) – Reverse the linked list.
Experiment 3: Doubly and Circular Linked Lists – Implement doubly linked list with all operations – Implement circular linked list – Solve Josephus problem using circular linked list.
Experiment 4: Linked List Problems – Find middle element using slow-fast pointer (Floyd's algorithm) – Detect and remove loop in linked list – Merge two sorted linked lists.
CYCLE 2: STACKS AND QUEUES
Experiment 5: Stack Implementation – Implement stack using arrays with push, pop, peek operations – Implement stack using linked list – Design min-stack (get minimum in O(1)).
Experiment 6: Stack Applications – Check balanced parentheses – Convert infix to postfix expression – Evaluate postfix expression – Find next greater element in array.
Experiment 7: Queue Implementation – Implement simple queue using array – Implement circular queue – Implement queue using linked list – Implement queue using two stacks.
CYCLE 3: TREES
Experiment 8: Binary Tree – Create binary tree using linked representation – Implement all traversals (inorder, preorder, postorder) – Implement level order traversal (BFS) – Find height and count nodes.
Experiment 9: Binary Search Tree – Implement BST with insert operation – Implement search and delete operations – Find inorder successor and predecessor.
Experiment 10: Heap Implementation – Implement max heap with insert and extract-max – Build heap from array (heapify) – Implement heap sort algorithm.
CYCLE 4: GRAPHS AND SORTING
Experiment 11: Graph Representation and Traversals – Implement graph using adjacency matrix and adjacency list – Implement BFS traversal – Implement DFS traversal.
Experiment 12: Graph Algorithms – Implement Dijkstra's shortest path algorithm – Implement Prim's minimum spanning tree – Implement topological sorting.
Experiment 13: Sorting Algorithms – Implement bubble sort, selection sort, insertion sort – Implement merge sort and quick sort – Implement heap sort – Compare time complexity experimentally.
Experiment 14: Hashing – Implement hash table with linear probing – Implement hash table with separate chaining – Count frequency of elements using hashing.
MINI PROJECT
Develop a comprehensive application using multiple data structures: Social Network Analysis, Autocomplete System, Task Scheduler, File System Simulation, or LRU Cache Implementation.
TEXTBOOKS
Ellis Horowitz, Sartaj Sahni, "Fundamentals of Data Structures in C", Universities Press, 2008
Thomas H. Cormen, "Introduction to Algorithms", MIT Press, 2009

[bookmark: DACSE105__AGILE_PRODUCT_MANAGEMENT]DACSE105: AGILE PRODUCT MANAGEMENT
Diploma in Advanced Computer Science & Engineering
Acharya Nagarjuna University – Distance Education Program
Course Code: DACSE105
Course Title: Agile Product Management
Credits: 3
Semester: 1
Prerequisites: None
COURSE OBJECTIVES
To understand agile philosophy, principles, and values
To learn Scrum framework and its implementation
To develop skills in product backlog management and user story writing
To master sprint planning, execution, and retrospectives
To prepare students for agile roles in software development teams
COURSE OUTCOMES (COs)
Upon completion of this course, students will be able to:
	CO
	Description
	Bloom's Level

	CO1
	Compare agile methodology with traditional software development approaches
	Analyze

	CO2
	Apply Scrum framework in software project management
	Apply

	CO3
	Create and prioritize product backlogs using agile techniques
	Create

	CO4
	Plan and execute sprints with proper ceremonies and artifacts
	Apply

	CO5
	Use agile project management tools for tracking and reporting
	Apply

DETAILED SYLLABUS
UNIT I: INTRODUCTION TO AGILE AND SOFTWARE DEVELOPMENT METHODOLOGIES
Evolution of Software Development Methodologies – Traditional Software Development Lifecycle (SDLC) – Waterfall Model (Characteristics and Limitations) – V-Model and Spiral Model – Need for Iterative and Incremental Development – Problems with Traditional Approaches: Long development cycles, Late feedback incorporation, Difficulty in handling changes, Documentation overhead.
Introduction to Agile – The Agile Manifesto (Four Values): Individuals and interactions over processes and tools, Working software over comprehensive documentation, Customer collaboration over contract negotiation, Responding to change over following a plan – 12 Principles of Agile Software Development – Benefits of Agile: Faster time to market, Improved quality, Customer satisfaction, Team morale, Flexibility and adaptability.
Agile Frameworks Overview – Scrum – Kanban – Extreme Programming (XP) – Lean Software Development – Crystal – Feature-Driven Development (FDD) – Choosing the Right Framework – Agile vs Waterfall: Key Differences, When to Use Agile, When to Use Waterfall, Hybrid Approaches.
Illustrative Case Studies: How Spotify transformed software development using Agile; Comparison of a project done using Waterfall vs Agile approach; Case study of failed waterfall project rescued by Agile adoption; Analysis of Agile adoption in a startup environment.
UNIT II: SCRUM FRAMEWORK FUNDAMENTALS
Introduction to Scrum – What is Scrum? – History and Evolution of Scrum – Scrum Theory (Empirical Process Control): Transparency, Inspection, Adaptation – Scrum Values: Commitment, Focus, Openness, Respect, Courage.
Scrum Team – Product Owner: Responsibilities, Skills Required, Common Challenges – Scrum Master: Servant Leadership, Facilitation Role, Removing Impediments, Coaching the Team – Development Team: Self-organizing Teams, Cross-functional Teams, Optimal Team Size (5-9 members), Team Dynamics.
Scrum Artifacts – Product Backlog: Definition, Characteristics, Ordering and Prioritization – Sprint Backlog: Selection from Product Backlog, Sprint Goal, Task Breakdown – Increment: Definition of Done, Potentially Shippable Product, Quality Standards.
Scrum Events – The Sprint: Fixed Duration (1-4 weeks), Sprint Goal, Timeboxing Concept – Sprint Planning: What can be done?, How will it be done?, Capacity Planning – Daily Scrum (Stand-up): 15-minute timebox, Three Questions, Synchronization – Sprint Review: Demonstrating Increment, Stakeholder Feedback, Backlog Refinement – Sprint Retrospective: What went well?, What can be improved?, Actionable improvements.
Illustrative Exercises: Role-play: Conduct a Sprint Planning meeting; Simulate a Daily Scrum for a sample project; Design a Scrum board for an e-commerce project; Case study: Analyze Scrum implementation failures and lessons.
UNIT III: PRODUCT BACKLOG MANAGEMENT AND USER STORIES
Understanding User Stories – What is a User Story? – User Story Format: "As a [user], I want [goal], so that [benefit]" – Components of a Good User Story (INVEST): Independent, Negotiable, Valuable, Estimable, Small, Testable – User Story vs Requirements – Epic, Theme, and User Story Hierarchy.
Writing Effective User Stories – Identifying Users and Personas – User Story Mapping – Story Splitting Techniques – Vertical Slicing – Adding Details (Acceptance Criteria) – Given-When-Then Format (Gherkin Syntax) – Definition of Ready.
Product Backlog Refinement (Grooming) – What is Backlog Refinement? – When to Refine – Who Participates – Activities in Refinement: Adding new stories, Removing obsolete items, Splitting stories, Estimating effort, Prioritizing items.
Prioritization Techniques – MoSCoW Method (Must, Should, Could, Won't) – Kano Model – Value vs Effort Matrix – Weighted Shortest Job First (WSJF) – Story Mapping for Prioritization – Technical Debt Management.
Estimation Techniques – Why Estimate? – Story Points vs Hours – Relative Estimation – Planning Poker – T-Shirt Sizing – Affinity Estimation – Velocity Calculation.
Illustrative Problems: Convert traditional requirements into user stories; Write acceptance criteria for given user stories; Conduct a planning poker session for story estimation; Create a user story map for a food delivery application; Apply MoSCoW prioritization to a sample product backlog.
UNIT IV: SPRINT EXECUTION AND AGILE ENGINEERING PRACTICES
Sprint Execution – Starting the Sprint – Daily Work Management – Updating Sprint Backlog – Tracking Progress: Burndown Charts, Burnup Charts, Cumulative Flow Diagrams – Handling Scope Changes During Sprint – Managing Impediments.
Agile Engineering Practices – Test-Driven Development (TDD): Red-Green-Refactor Cycle, Benefits of TDD – Behavior-Driven Development (BDD): Gherkin Syntax, Feature Files – Pair Programming: Driver and Navigator, Benefits and Challenges – Code Review: Peer Reviews, Pull Request Reviews – Continuous Integration (CI): Automated Builds, Automated Testing, Integration with Agile – Refactoring: Code Improvement, Maintaining Clean Code.
Definition of Done (DoD) – What is Definition of Done? – Creating DoD for Team – DoD at Different Levels: Story Level, Sprint Level, Release Level – Quality Gates – Undone Work.
Agile Metrics and Reporting – Velocity: Calculation, Using Velocity for Planning, Velocity Trends – Sprint Burndown Chart – Release Burndown Chart – Lead Time and Cycle Time – Escaped Defects – Team Happiness Index.
Illustrative Exercises: Create a sprint burndown chart from given data; Calculate team velocity from past sprint data; Design a Definition of Done for a web application project; Analyze burndown chart patterns and identify issues; Practice code review using agile principles.
UNIT V: AGILE TOOLS, SCALING, AND ADVANCED TOPICS
Agile Project Management Tools – Introduction to Agile Tools – Jira: Project Setup, Backlog Management, Sprint Planning, Boards and Reports – Azure DevOps Boards – Trello for Kanban – Asana – Monday.com – GitHub Projects – Choosing the Right Tool.
Kanban – Kanban Principles – Kanban Practices: Visualize Workflow, Limit Work in Progress (WIP), Manage Flow, Make Policies Explicit, Improve Collaboratively – Kanban Board Design – Kanban vs Scrum – Scrumban (Hybrid Approach).
Scaling Agile – Challenges in Scaling Agile – Scaled Agile Framework (SAFe): Essential SAFe, Portfolio SAFe, Large Solution SAFe, Full SAFe – Large-Scale Scrum (LeSS) – Nexus Framework – Scrum of Scrums – Release Trains and Program Increments.
Agile in Organizations – Agile Transformation Journey – Organizational Change Management – Agile Leadership – Building Agile Culture – Common Challenges and Solutions – DevOps and Agile Integration.
Agile Certifications and Career – Professional Scrum Master (PSM) – Certified Scrum Master (CSM) – SAFe Certifications – PMI-ACP – Career Paths in Agile.
Illustrative Exercises: Set up a project in Jira with sprints and backlog; Design a Kanban board for a support team; Create a release plan using velocity-based forecasting; Compare Scrum vs Kanban for different project types; Case study: Analyze a large organization's Agile transformation.
TEXTBOOKS
Ken Schwaber, Jeff Sutherland, "The Scrum Guide", Scrum.org (Latest Version)
Mike Cohn, "User Stories Applied: For Agile Software Development", Addison-Wesley, 2004
Roman Pichler, "Agile Product Management with Scrum", Addison-Wesley, 2010
Kenneth S. Rubin, "Essential Scrum: A Practical Guide to the Most Popular Agile Process", Addison-Wesley, 2012

[bookmark: DACSE106__CAPSTONE_PROJECT_1]DACSE106: CAPSTONE PROJECT 1
Diploma in Advanced Computer Science & Engineering
Acharya Nagarjuna University – Distance Education Program
Course Code: DACSE106
Course Title: Capstone Project 1
Credits: 3
Semester: 1
Prerequisites: DACSE101, DACSE103, DACSE105 (Co-requisites)
COURSE OBJECTIVES
To provide hands-on experience in developing a complete software project
To apply programming, data structures, and agile concepts learned in Semester 1
To develop skills in requirements gathering, design, and implementation
To practice working in teams and managing project timelines
To prepare students for real-world software development challenges
COURSE OUTCOMES (COs)
Upon completion of this course, students will be able to:
	CO
	Description
	Bloom's Level

	CO1
	Gather and document software requirements
	Apply

	CO2
	Design software solutions using appropriate data structures
	Create

	CO3
	Implement a complete software project using Java/Python
	Create

	CO4
	Apply agile practices in project execution
	Apply

	CO5
	Present and demonstrate software projects effectively
	Evaluate

PROJECT GUIDELINES
Project Scope
The Capstone Project 1 is a mini-project that integrates concepts from Computer Programming (Java/Python), Data Structures & Algorithms, and Agile Product Management. Students work individually or in teams of 2-3 members to develop a complete software application.
Suggested Project Categories
Console-Based Applications: Student Information System – Library Management System – Inventory Management System – Banking Application.
Algorithm-Focused Applications: Text Analysis Tool – Data Processing Application – Quiz/Assessment System – Scheduling Application.
Game/Puzzle Applications: Tic-Tac-Toe with AI – Sudoku Solver/Generator – Snake Game – Word Puzzle Game.
PROJECT PHASES
Phase 1: Project Proposal – Project title and description – Problem statement – Objectives – Proposed features (user stories) – Technology stack.
Phase 2: Requirements and Design – Software Requirements Specification (SRS) – Product Backlog with user stories – System design document – Data structure selection justification – Class diagrams and flowcharts.
Phase 3: Sprint 1 - Core Implementation – Sprint planning – Core functionality implementation – Basic CRUD operations – Sprint review and retrospective.
Phase 4: Sprint 2 - Feature Completion – Additional features implementation – Error handling and input validation – Sprint review and retrospective.
Phase 5: Testing and Documentation – Test cases and results – User manual – Technical documentation.
Phase 6: Final Presentation – Live demonstration – Project report – Source code submission.
PROJECT REQUIREMENTS
Programming Requirements: Object-Oriented Design (minimum 3-4 classes) – Proper exception handling – Input validation – Modular code structure.
Data Structures Requirements: At least 2 different data structures used appropriately – Efficient algorithm implementation – Proper complexity consideration.
Additional Requirements: Data persistence (file-based storage) – Menu-driven interface – Proper use of Git for version control.
TEXTBOOKS
Herbert Schildt, "Java: The Complete Reference", McGraw Hill, 2019
Ken Schwaber, "The Scrum Guide", Scrum.org

[bookmark: DACSE201__ADVANCED_COMPUTER_PROGRAMMING_]DACSE201: ADVANCED COMPUTER PROGRAMMING TOOLS
Diploma in Advanced Computer Science & Engineering
Acharya Nagarjuna University – Distance Education Program
Course Code: DACSE201
Course Title: Advanced Computer Programming Tools
Credits: 3
Semester: 2
Prerequisites: DACSE101, DACSE103 – Programming and Data Structures
COURSE OBJECTIVES
To understand modern enterprise development frameworks and architectures
To master Spring Boot for building production-ready Java applications
To learn Python Flask for developing web services and APIs
To understand build automation tools (Maven, Gradle, pip)
To develop skills in version control and collaborative development using Git
COURSE OUTCOMES (COs)
Upon completion of this course, students will be able to:
	CO
	Description
	Bloom's Level

	CO1
	Design and develop enterprise applications using Spring Boot
	Create

	CO2
	Build RESTful web services using Flask and Spring Boot
	Apply

	CO3
	Implement proper project structure using build automation tools
	Apply

	CO4
	Apply version control practices using Git and GitHub
	Apply

	CO5
	Develop full-stack applications with proper architecture
	Create

DETAILED SYLLABUS
UNIT I: INTRODUCTION TO ENTERPRISE DEVELOPMENT AND BUILD TOOLS
Enterprise Application Development Overview – What is Enterprise Software? – Characteristics of Enterprise Applications: Scalability, Reliability, Security, Performance – Evolution of Enterprise Development – Monolithic vs Microservices Architecture – Multi-tier Architecture: Presentation, Business, Data – MVC (Model-View-Controller) Pattern – API-First Development Approach.
Maven (Java) – Introduction to Maven – Maven Project Structure: src/main/java, src/main/resources, src/test/java, pom.xml – Project Object Model (POM): groupId, artifactId, version, Dependencies, Plugins, Profiles – Maven Lifecycle: clean, compile, test, package, install, deploy – Dependency Management: Maven Central Repository, Adding Dependencies, Dependency Scopes, Transitive Dependencies – Maven Plugins and Goals.
Gradle (Introduction) – Gradle vs Maven Comparison – build.gradle File Structure – Gradle Tasks.
Python Package Management – pip (Python Package Installer) – requirements.txt – Virtual Environments: venv, virtualenv, conda – pipenv and Poetry (Modern alternatives) – Managing Dependencies.
Illustrative Problems: Create a Maven project with proper structure and dependencies; Configure a multi-module Maven project; Set up a Python virtual environment with requirements.txt; Convert a Maven project to Gradle; Manage dependency conflicts in Maven project.
UNIT II: SPRING BOOT FUNDAMENTALS
Introduction to Spring Ecosystem – Spring Framework Overview – Dependency Injection (DI) and Inversion of Control (IoC) – Spring Boot vs Spring Framework – Why Spring Boot?: Auto-configuration, Embedded Servers, Production-ready features, Minimal configuration.
Getting Started with Spring Boot – Spring Initializr (start.spring.io) – Project Structure: Main Application Class, @SpringBootApplication Annotation, application.properties / application.yml – Running Spring Boot Application – Spring Boot DevTools.
Spring Boot Core Concepts – Spring Beans and IoC Container – Annotations: @Component, @Service, @Repository, @Controller, @Autowired (Dependency Injection), @Configuration, @Bean, @Value (Property Injection), @Profile (Environment-specific beans) – Component Scanning – Bean Scopes: Singleton, Prototype, Request, Session.
Spring Boot Configuration – application.properties vs application.yml – Configuration Properties: Server configuration, Database configuration, Logging configuration – Externalized Configuration – Profiles for Different Environments: application-dev.properties, application-prod.properties – Environment Variables and Command-line Arguments.
Logging in Spring Boot – SLF4J and Logback – Log Levels: TRACE, DEBUG, INFO, WARN, ERROR – Configuring Logging – Logging Patterns.
Illustrative Problems: Create a Spring Boot application with custom configuration; Implement dependency injection with multiple implementations; Configure different profiles for dev, test, and prod environments; Create a Spring Boot application with custom logging; Use @Value annotation to inject configuration properties.
UNIT III: BUILDING REST APIs WITH SPRING BOOT
Introduction to REST – What is REST (Representational State Transfer)? – REST Principles: Client-Server Architecture, Statelessness, Cacheability, Uniform Interface, Layered System – REST vs SOAP – HTTP Methods: GET, POST, PUT, PATCH, DELETE – HTTP Status Codes: 2xx Success (200, 201, 204), 3xx Redirection, 4xx Client Errors (400, 401, 403, 404), 5xx Server Errors (500, 503).
Spring Web MVC for REST – @RestController Annotation – @RequestMapping and Shortcuts: @GetMapping, @PostMapping, @PutMapping, @DeleteMapping, @PatchMapping – Path Variables: @PathVariable – Request Parameters: @RequestParam – Request Body: @RequestBody – Response Entity and ResponseBody – Content Negotiation.
Building CRUD APIs – Designing Resource URLs – Implementing CRUD Operations: Create (POST), Read (GET – single and list), Update (PUT/PATCH), Delete (DELETE) – DTO (Data Transfer Object) Pattern – Entity to DTO Mapping – Pagination and Sorting: Page, Pageable, Sort.
Exception Handling – @ExceptionHandler – @ControllerAdvice – Custom Exception Classes – Error Response Structure – Validation Errors Handling.
API Documentation – Swagger/OpenAPI – SpringDoc OpenAPI – Documenting APIs – Swagger UI.
Illustrative Problems: Build a complete CRUD REST API for a Book management system; Implement pagination and sorting for list endpoints; Create custom exception handling with proper error responses; Document API using Swagger/OpenAPI; Implement request validation with proper error messages.
UNIT IV: PYTHON FLASK WEB DEVELOPMENT
Introduction to Flask – What is Flask? – Flask vs Django Comparison – Flask Micro-framework Philosophy – Installing Flask – First Flask Application – Development Server and Debug Mode.
Flask Application Structure – Single File vs Package Structure – Application Factory Pattern – Blueprints for Modular Applications – Configuration Management – Environment Variables with python-dotenv.
Routing and Views – URL Routing: @app.route Decorator, Dynamic Routes, URL Building with url_for – HTTP Methods in Flask – Request Object: request.args, request.form, request.json, request.files – Response Object: make_response(), jsonify(), redirect(), abort().
Building REST APIs with Flask – Flask-RESTful Extension – Resource Classes – Request Parsing – Output Formatting – Error Handling – CORS (Cross-Origin Resource Sharing).
Flask Extensions – Flask-SQLAlchemy for Database – Flask-Migrate for Migrations – Flask-Marshmallow for Serialization – Flask-JWT-Extended for Authentication – Flask-CORS for Cross-Origin Requests.
Template Rendering (Jinja2) – Jinja2 Basics – Template Inheritance – Control Structures – Filters and Macros – Static Files.
Illustrative Problems: Create a Flask application with blueprint structure; Build a REST API for a Todo application using Flask-RESTful; Implement user authentication using Flask-JWT-Extended; Create a Flask application with database integration; Build a simple web application with templates.
UNIT V: VERSION CONTROL AND COLLABORATIVE DEVELOPMENT
Introduction to Version Control – What is Version Control? – Benefits of Version Control – Types of Version Control Systems: Local VCS, Centralized VCS (SVN), Distributed VCS (Git) – Git Overview and History.
Git Fundamentals – Git Installation and Configuration – Git Repository: git init, git clone – Git Workflow: Working Directory, Staging Area, Repository – Basic Git Commands: git add, git commit, git status, git log, git diff.
Branching and Merging – Understanding Branches – Creating and Switching Branches: git branch, git checkout, git switch – Merging Branches: git merge, Fast-forward merge, Three-way merge – Merge Conflicts and Resolution – Branch Strategies: Git Flow, GitHub Flow, Trunk-based Development.
Remote Repositories – GitHub, GitLab, Bitbucket Overview – Remote Operations: git remote, git push, git pull, git fetch – Fork and Clone – Pull Requests / Merge Requests – Code Review Process.
Advanced Git – Git Stash – Git Rebase vs Merge – Cherry-pick – Git Tags for Releases – .gitignore File – Git Hooks (Introduction).
Collaborative Development Best Practices – Commit Message Conventions – Branch Naming Conventions – Code Review Guidelines – Continuous Integration with Git – GitHub Actions (Introduction).
Illustrative Problems: Initialize a Git repository and perform basic operations; Create feature branches and merge with conflict resolution; Set up a GitHub repository and collaborate with teammates; Create a pull request with proper description and review; Implement Git Flow branching strategy for a project.
TEXTBOOKS
Craig Walls, "Spring in Action", 6th Edition, Manning Publications, 2022
Miguel Grinberg, "Flask Web Development", 2nd Edition, O'Reilly Media, 2018
Jon Loeliger, Matthew McCullough, "Version Control with Git", 3rd Edition, O'Reilly Media, 2022
Scott Chacon, Ben Straub, "Pro Git", 2nd Edition, Apress, 2014

[bookmark: DACSE202__ADVANCED_COMPUTER_PROGRAMMING_]DACSE202: ADVANCED COMPUTER PROGRAMMING TOOLS LAB
Diploma in Advanced Computer Science & Engineering
Acharya Nagarjuna University – Distance Education Program
Course Code: DACSE202
Course Title: Advanced Computer Programming Tools Lab
Credits: 2
Semester: 2
Prerequisites: DACSE201 (Co-requisite)
COURSE OBJECTIVES
To provide hands-on experience with Spring Boot and Flask frameworks
To develop skills in building production-ready REST APIs
To practice version control and collaborative development
To implement proper project structure and best practices
To prepare students for real-world enterprise development
COURSE OUTCOMES (COs)
Upon completion of this course, students will be able to:
	CO
	Description
	Bloom's Level

	CO1
	Set up and configure Spring Boot and Flask projects
	Apply

	CO2
	Develop complete CRUD REST APIs with proper architecture
	Create

	CO3
	Implement authentication and authorization in APIs
	Apply

	CO4
	Use Git for version control and collaboration
	Apply

	CO5
	Deploy applications with proper documentation
	Create

LIST OF EXPERIMENTS
CYCLE 1: PROJECT SETUP AND BUILD TOOLS
Experiment 1: Maven Project Setup – Install Java JDK and Maven – Create Maven project using command line – Understand pom.xml structure and add dependencies – Execute Maven lifecycle phases.
Experiment 2: Python Virtual Environment – Install Python and pip – Create virtual environment using venv – Install packages and create requirements.txt – Set up Flask project structure.
Experiment 3: Git Basics – Install and configure Git – Initialize repository and make commits – Create and merge branches – Push to GitHub and create pull requests.
CYCLE 2: SPRING BOOT DEVELOPMENT
Experiment 4: Spring Boot Project Creation – Create Spring Boot project using Spring Initializr – Understand project structure – Configure application.properties – Create simple REST endpoints.
Experiment 5: Building CRUD REST API – Create Entity classes with JPA annotations – Implement Repository layer using Spring Data JPA – Create Service layer with business logic – Build REST Controller with all CRUD operations.
Experiment 6: Database Integration – Configure H2/MySQL database connection – Use Spring Data JPA for database operations – Implement custom queries – Test with database console.
Experiment 7: API Validation and Documentation – Add Bean Validation annotations – Handle validation errors – Configure SpringDoc OpenAPI – Document API with Swagger UI.
CYCLE 3: FLASK DEVELOPMENT
Experiment 8: Flask Project Setup – Create Flask application with blueprint structure – Configure application factory pattern – Implement basic routes – Use Jinja2 templates.
Experiment 9: Flask REST API – Build REST API using Flask-RESTful – Implement CRUD operations – Add request parsing and validation – Handle errors and exceptions.
Experiment 10: Flask Authentication – Create User model with password hashing – Implement registration endpoint – Implement JWT-based login – Protect routes with authentication.
Experiment 11: Flask Database Integration – Configure Flask-SQLAlchemy – Create models with relationships – Implement database migrations – Perform CRUD with ORM.
CYCLE 4: INTEGRATION AND DEPLOYMENT
Experiment 12: API Testing – Create Postman collection – Set up environment variables – Write test scripts – Generate API documentation.
Experiment 13: Containerization – Create Dockerfile for Spring Boot/Flask – Build and run Docker containers – Create docker-compose.yml for multi-service setup.
MINI PROJECT
Build a complete full-stack application: E-Commerce API, Blog Platform, Task Management System, Library Management, or Restaurant API with authentication, database integration, API documentation, and deployment configuration.
TEXTBOOKS
Craig Walls, "Spring in Action", Manning Publications, 2022
Miguel Grinberg, "Flask Web Development", O'Reilly Media, 2018

[bookmark: DACSE203__ENTERPRISE_DATA_SOURCES___CONC]DACSE203: ENTERPRISE DATA SOURCES & CONCEPTS
Diploma in Advanced Computer Science & Engineering
Acharya Nagarjuna University – Distance Education Program
Course Code: DACSE203
Course Title: Enterprise Data Sources & Concepts
Credits: 3
Semester: 2
Prerequisites: DACSE103 – Data Structures & Algorithms
COURSE OBJECTIVES
To understand enterprise data management concepts and architectures
To master relational database design and SQL
To learn NoSQL databases and their use cases
To develop skills in data modeling and database integration
To understand when to choose SQL vs NoSQL databases
COURSE OUTCOMES (COs)
Upon completion of this course, students will be able to:
	CO
	Description
	Bloom's Level

	CO1
	Design normalized relational database schemas
	Create

	CO2
	Write complex SQL queries for data manipulation and retrieval
	Apply

	CO3
	Choose appropriate database type (SQL/NoSQL) for given requirements
	Evaluate

	CO4
	Implement document and key-value databases using MongoDB and Redis
	Apply

	CO5
	Integrate databases with application backends
	Apply

DETAILED SYLLABUS
UNIT I: DATABASE FUNDAMENTALS AND RELATIONAL MODEL
Introduction to Database Systems – What is a Database? – Database Management System (DBMS) – Advantages of DBMS over File Systems – Types of Database Models – Database Users and Administrators – Three-Schema Architecture: External Level, Conceptual Level, Internal Level – Data Independence: Logical and Physical.
Relational Database Model – Relational Model Concepts: Relation (Table), Tuple (Row), Attribute (Column), Domain, Degree and Cardinality – Keys: Super Key, Candidate Key, Primary Key, Foreign Key, Composite Key, Alternate Key – Relational Integrity Constraints: Domain Constraints, Key Constraints, Entity Integrity, Referential Integrity – Relational Algebra Operations: Select, Project, Union, Intersection, Difference, Cartesian Product, Join Operations.
Entity-Relationship (ER) Modeling – Components of ER Diagram: Entities and Attributes, Relationships, Cardinality (1:1, 1:N, M:N), Participation – Weak Entities – Converting ER Diagram to Relations.
Illustrative Problems: Identify keys for a given relation; Draw ER diagram for a library management system; Convert ER diagram to relational schema; Perform relational algebra operations; Design ER diagram for an e-commerce platform.
UNIT II: SQL AND DATABASE DESIGN
Introduction to SQL – SQL Components: DDL, DML, DCL, TCL – MySQL/PostgreSQL Environment Setup.
Data Definition Language (DDL) – CREATE Statement: CREATE DATABASE, CREATE TABLE, Data Types, Constraints (NOT NULL, UNIQUE, PRIMARY KEY, FOREIGN KEY, CHECK, DEFAULT) – ALTER Statement – DROP and TRUNCATE Statements – CREATE INDEX.
Data Manipulation Language (DML) – INSERT Statement – SELECT Statement: WHERE Clause, Comparison and Logical Operators, BETWEEN, IN, LIKE, IS NULL, ORDER BY, LIMIT/OFFSET – UPDATE Statement – DELETE Statement – DISTINCT Keyword.
Advanced SQL Queries – Aggregate Functions: COUNT, SUM, AVG, MAX, MIN – GROUP BY Clause – HAVING Clause – Subqueries: Scalar, Row, Table, Correlated Subqueries – EXISTS and NOT EXISTS – CASE Expressions – Set Operations: UNION, INTERSECT, EXCEPT.
Database Normalization – Functional Dependencies – Normal Forms: 1NF, 2NF, 3NF, BCNF – Denormalization (When and Why).
Illustrative Problems: Create database schema for student management system; Write queries using aggregate functions and GROUP BY; Implement complex queries with subqueries; Normalize a given table to 3NF; Design database schema for a hospital management system.
UNIT III: ADVANCED SQL – JOINS, PROCEDURES, AND TRANSACTIONS
SQL Joins – Types of Joins: INNER JOIN, LEFT OUTER JOIN, RIGHT OUTER JOIN, FULL OUTER JOIN, CROSS JOIN, SELF JOIN – Multiple Table Joins – Natural Join.
Views – Creating Views – Updatable Views – Advantages of Views.
Stored Procedures and Functions – Creating Stored Procedures: Parameters (IN, OUT, INOUT), Local Variables, Control Structures – Creating Functions – Exception Handling.
Triggers – Types of Triggers: BEFORE/AFTER, INSERT/UPDATE/DELETE – Creating Triggers – Use Cases: Audit Logging, Data Validation.
Transactions and Concurrency – ACID Properties – Transaction Control: BEGIN, COMMIT, ROLLBACK, SAVEPOINT – Isolation Levels – Concurrency Issues: Dirty Read, Non-repeatable Read, Phantom Read – Locking Mechanisms.
Illustrative Problems: Write queries using different types of joins; Create a view for employee salary reports; Implement a stored procedure for order processing; Create a trigger for audit logging; Demonstrate transaction handling with rollback.
UNIT IV: NoSQL DATABASES – MONGODB
Introduction to NoSQL – Limitations of Relational Databases for Certain Use Cases – CAP Theorem: Consistency, Availability, Partition Tolerance – BASE vs ACID – When to Use NoSQL – Types of NoSQL Databases: Key-Value Stores, Document Databases, Column-Family Stores, Graph Databases.
Document Databases (MongoDB) – Introduction to MongoDB – MongoDB Architecture: Documents (JSON/BSON), Collections, Databases – MongoDB Data Types – Installation and Setup.
MongoDB CRUD Operations – insertOne(), insertMany() – find(), findOne() with Projections and Filters – updateOne(), updateMany() – deleteOne(), deleteMany().
MongoDB Query Operators – Comparison Operators: $eq, $ne, $gt, $lt, $gte, $lte – Logical Operators: $and, $or, $not – Array Operators: $all, $elemMatch, $size – Element Operators: $exists, $type.
MongoDB Aggregation – Aggregation Pipeline Concept – Pipeline Stages: $match, $group, $sort, $project, $limit, $skip – Grouping and Aggregation Operations.
Indexing in MongoDB – Single Field Index – Compound Index – Text Index – Index Performance.
Data Modeling in MongoDB – Embedding vs Referencing – Schema Design Patterns – One-to-One, One-to-Many, Many-to-Many Relationships.
Illustrative Problems: Design a MongoDB schema for a blog application; Write MongoDB queries with various operators; Implement aggregation pipeline for analytics; Create indexes and analyze query performance; Compare MongoDB vs MySQL for given scenarios.
UNIT V: IN-MEMORY DATA STORES – REDIS
Introduction to Redis – What is Redis? – In-Memory Data Stores Concept – Redis Use Cases: Caching, Session Management, Real-time Features, Message Queues – Redis Installation and Setup.
Redis Data Structures – Strings: SET, GET, INCR, DECR, APPEND – Lists: LPUSH, RPUSH, LPOP, RPOP, LRANGE – Sets: SADD, SMEMBERS, SINTER, SUNION – Sorted Sets: ZADD, ZRANGE, ZRANGEBYSCORE – Hashes: HSET, HGET, HGETALL, HMSET.
Redis Operations – Key Expiration: EXPIRE, TTL, PERSIST – Key Management: KEYS, EXISTS, DEL, RENAME – Transactions: MULTI, EXEC, DISCARD.
Redis Pub/Sub – Publish/Subscribe Pattern – PUBLISH, SUBSCRIBE, PSUBSCRIBE – Use Cases for Pub/Sub.
Redis in Applications – Implementing Caching Layer – Session Storage – Rate Limiting – Leaderboards using Sorted Sets – Real-time Counters.
Database Security Basics – Authentication and Authorization – Connection Security – SQL Injection Prevention – Data Encryption Concepts.
Illustrative Problems: Implement a caching layer using Redis; Build a session management system; Create a real-time leaderboard using sorted sets; Implement rate limiting; Integrate Redis with a web application.
TEXTBOOKS
Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of Database Systems", 7th Edition, Pearson, 2017
Abraham Silberschatz, Henry F. Korth, S. Sudarshan, "Database System Concepts", 7th Edition, McGraw Hill, 2020
Kristina Chodorow, "MongoDB: The Definitive Guide", 3rd Edition, O'Reilly Media, 2019

[bookmark: DACSE204__ENTERPRISE_DATA_MANAGEMENT_LAB]DACSE204: ENTERPRISE DATA MANAGEMENT LAB
Diploma in Advanced Computer Science & Engineering
Acharya Nagarjuna University – Distance Education Program
Course Code: DACSE204
Course Title: Enterprise Data Management Lab
Credits: 2
Semester: 2
Prerequisites: DACSE203 (Co-requisite)
COURSE OBJECTIVES
To provide hands-on experience with relational databases
To develop skills in writing complex SQL queries
To practice NoSQL database operations with MongoDB and Redis
To implement database design and normalization
To integrate databases with application frameworks
COURSE OUTCOMES (COs)
Upon completion of this course, students will be able to:
	CO
	Description
	Bloom's Level

	CO1
	Set up and configure database environments
	Apply

	CO2
	Implement database schemas with proper constraints
	Create

	CO3
	Write complex SQL queries for data analysis
	Apply

	CO4
	Perform CRUD operations on NoSQL databases
	Apply

	CO5
	Integrate databases with application frameworks
	Create

LIST OF EXPERIMENTS
CYCLE 1: RELATIONAL DATABASE FUNDAMENTALS
Experiment 1: Database Environment Setup – Install MySQL Server and Workbench – Create database and user accounts – Grant permissions and manage access.
Experiment 2: Creating Tables with Constraints – Create tables with various data types – Implement primary key and foreign key constraints – Add CHECK, UNIQUE, and DEFAULT constraints – Design complete database schema for an application.
Experiment 3: Data Manipulation (INSERT, UPDATE, DELETE) – Insert single and multiple records – Update records with conditions – Delete with cascading effects – Transaction handling with DML.
Experiment 4: SELECT Queries – Basic SELECT with filtering and sorting – Pattern matching with LIKE – Working with NULL values – Using comparison and logical operators.
CYCLE 2: ADVANCED SQL
Experiment 5: Aggregate Functions and GROUP BY – Use COUNT, SUM, AVG, MAX, MIN – Group data with GROUP BY – Filter groups with HAVING – Create analytical queries for reporting.
Experiment 6: JOIN Operations – Implement INNER JOIN, LEFT/RIGHT OUTER JOIN – Perform SELF JOIN – Multiple table joins – Join with aggregation.
Experiment 7: Subqueries and Advanced Queries – Scalar subqueries in SELECT – Subqueries in WHERE clause – Correlated subqueries – EXISTS and NOT EXISTS – Common Table Expressions (CTEs).
Experiment 8: Views, Stored Procedures, and Triggers – Create and use views – Write stored procedures with parameters – Create functions – Implement triggers for audit logging.
CYCLE 3: NoSQL DATABASES
Experiment 9: MongoDB Setup and Basic Operations – Install MongoDB and Compass – Create databases and collections – Insert documents – Query with find() and projections.
Experiment 10: MongoDB Aggregation – Use aggregation pipeline stages ($match, $group, $sort) – Perform lookups (joins) – Create and use indexes – Analyze query performance.
Experiment 11: Redis Basics – Install and connect to Redis – Work with strings, lists, sets, hashes – Implement caching patterns – Set expiration on keys.
CYCLE 4: DATABASE INTEGRATION
Experiment 12: Database Integration with Spring Boot – Configure JPA with MySQL – Create entity classes with relationships – Implement repository layer – Use Spring Data JPA methods.
Experiment 13: Database Integration with Flask – Configure Flask-SQLAlchemy – Create models with relationships – Perform migrations – Connect to MongoDB with PyMongo.
MINI PROJECT
Build a complete database-driven application: Inventory Management System, Analytics Dashboard, E-Commerce Backend, Log Analysis System, or Real-time Leaderboard with database schema design, ER diagram, SQL scripts, application integration, and performance optimization.
TEXTBOOKS
Ramez Elmasri, "Fundamentals of Database Systems", Pearson, 2017
Kristina Chodorow, "MongoDB: The Definitive Guide", O'Reilly Media, 2019

[bookmark: DACSE205__ADVANCED_ENTERPRISE_AUTOMATION]DACSE205: ADVANCED ENTERPRISE AUTOMATION PROCESS
Diploma in Advanced Computer Science & Engineering
Acharya Nagarjuna University – Distance Education Program
Course Code: DACSE205
Course Title: Advanced Enterprise Automation Process
Credits: 3
Semester: 2
Prerequisites: DACSE201, DACSE203 – Advanced Programming and Data Sources
COURSE OBJECTIVES
To understand DevOps culture, principles, and practices
To master containerization using Docker
To learn CI/CD pipeline implementation using GitHub Actions
To introduce Google Cloud Platform (GCP) fundamentals
To develop skills in deploying applications to cloud
COURSE OUTCOMES (COs)
Upon completion of this course, students will be able to:
	CO
	Description
	Bloom's Level

	CO1
	Explain DevOps principles and their importance in software delivery
	Understand

	CO2
	Create and manage Docker containers for application deployment
	Apply

	CO3
	Design and implement CI/CD pipelines using GitHub Actions
	Create

	CO4
	Deploy applications on Google Cloud Platform
	Apply

	CO5
	Implement basic monitoring and logging for applications
	Apply

DETAILED SYLLABUS
UNIT I: INTRODUCTION TO DEVOPS
Software Development Lifecycle Evolution – Traditional Development Challenges – Waterfall Model Limitations – Agile Development Practices – The Gap Between Development and Operations – Need for Continuous Delivery.
Introduction to DevOps – What is DevOps? – DevOps Definition and Philosophy – DevOps Principles: Culture of Collaboration, Automation, Measurement, Sharing – DevOps vs Traditional IT – DevOps Lifecycle: Plan, Code, Build, Test, Release, Deploy, Operate, Monitor.
DevOps Culture and Practices – Breaking Down Silos – Shared Responsibility – Continuous Improvement – Feedback Loops.
Version Control Best Practices – Git Workflows for Teams: Git Flow, GitHub Flow, Trunk-Based Development – Branching Strategies – Code Review Process – Pull Request Best Practices.
Automation Fundamentals – Why Automate? – Areas of Automation: Build, Test, Deployment, Infrastructure – Scripting Basics for Automation.
Illustrative Problems: Compare traditional vs DevOps workflows; Design a branching strategy for a team project; Create a pull request workflow; Identify automation opportunities in a development process.
UNIT II: CONTAINERIZATION WITH DOCKER
Introduction to Containers – What are Containers? – Containers vs Virtual Machines – Benefits of Containerization: Portability, Consistency, Efficiency, Isolation.
Docker Fundamentals – Docker Architecture: Docker Client, Docker Daemon, Docker Registry – Installing Docker – Docker CLI Basics: docker run, docker ps, docker images, docker pull/push, docker exec, docker logs, docker stop/start/rm.
Docker Images – Understanding Docker Images – Image Layers and Caching – Dockerfile: FROM, RUN, COPY/ADD, WORKDIR, ENV, EXPOSE, CMD/ENTRYPOINT – Building Images: docker build – Multi-stage Builds – Best Practices for Dockerfiles.
Docker Containers – Container Lifecycle – Container Networking: Bridge Network, Host Network – Container Volumes: Bind Mounts, Named Volumes – Container Resource Management.
Docker Compose – Introduction to Docker Compose – docker-compose.yml Structure – Defining Multi-container Applications – Docker Compose Commands: docker-compose up/down, logs, ps.
Docker Hub – Pushing and Pulling Images – Image Tagging and Versioning.
Illustrative Problems: Containerize a Spring Boot application; Containerize a Flask application; Create multi-stage Dockerfile for optimized builds; Set up multi-container application with Docker Compose; Push images to Docker Hub.
UNIT III: CI/CD WITH GITHUB ACTIONS
Continuous Integration (CI) – What is Continuous Integration? – CI Principles and Benefits – CI Best Practices: Maintain Single Source Repository, Automate the Build, Make Build Self-testing, Fix Broken Builds Immediately.
Continuous Delivery and Deployment – Continuous Delivery vs Continuous Deployment – Deployment Pipeline Stages: Build, Test, Deploy – Release Strategies: Rolling Updates, Blue-Green Deployment Concepts.
GitHub Actions Fundamentals – Introduction to GitHub Actions – Workflows, Jobs, and Steps – Workflow YAML Syntax: name, on, jobs, runs-on, steps.
GitHub Actions in Detail – Triggers: push, pull_request, schedule, workflow_dispatch – Using Actions from Marketplace – Environment Variables and Secrets – Matrix Builds – Caching Dependencies – Artifacts.
Building CI Pipelines – Setting up CI for Java/Maven Projects – Setting up CI for Python Projects – Running Automated Tests – Code Quality Checks.
Building CD Pipelines – Deploying to Cloud from GitHub Actions – Environment Management – Deployment Approvals – Rollback Strategies.
Illustrative Problems: Create GitHub Actions workflow for Java/Maven project; Create GitHub Actions workflow for Python project; Implement automated testing in CI pipeline; Configure deployment to GCP; Set up code quality checks.
UNIT IV: GOOGLE CLOUD PLATFORM FUNDAMENTALS
Introduction to Cloud Computing – What is Cloud Computing? – Cloud Service Models: IaaS, PaaS, SaaS – Cloud Deployment Models: Public, Private, Hybrid – Benefits of Cloud Computing.
Google Cloud Platform Overview – GCP Global Infrastructure: Regions and Zones – GCP Console and Cloud Shell – GCP Free Tier – Setting up GCP Account.
GCP Compute Services – Compute Engine: Virtual Machines, Machine Types, Creating and Managing VMs – App Engine: Platform as a Service, Deploying Applications – Cloud Run: Serverless Containers, Deploying Docker Containers.
GCP Storage Services – Cloud Storage: Buckets, Objects, Storage Classes – Persistent Disk – Filestore Overview.
GCP Database Services – Cloud SQL: Managed MySQL/PostgreSQL – Firestore: NoSQL Document Database – Cloud Memorystore: Managed Redis.
GCP Networking Basics – Virtual Private Cloud (VPC) – Firewall Rules – Load Balancing Concepts – Cloud DNS.
Illustrative Problems: Create and configure a VM on Compute Engine; Deploy a web application to App Engine; Deploy a containerized application to Cloud Run; Set up Cloud Storage bucket; Configure Cloud SQL instance.
UNIT V: DEPLOYMENT AND MONITORING ON GCP
Deploying Applications to GCP – Deployment Options Overview – Deploying to Compute Engine – Deploying to App Engine – Deploying Containers to Cloud Run – Using Container Registry.
GCP Identity and Access Management – IAM Concepts: Users, Service Accounts, Roles, Permissions – Principle of Least Privilege – Creating Service Accounts – Managing Access.
CI/CD with GCP – Cloud Build Overview – Integrating GitHub with Cloud Build – Deploying from CI/CD Pipeline to GCP.
Monitoring with Cloud Operations – Cloud Monitoring: Metrics, Dashboards, Uptime Checks – Cloud Logging: Log Viewer, Log-based Metrics – Setting up Alerts – Basic Troubleshooting.
Application Security Basics – Secret Manager: Storing and Accessing Secrets – Security Best Practices – HTTPS and SSL Certificates.
Cost Management – Understanding GCP Pricing – Billing and Budgets – Cost Optimization Tips.
Illustrative Problems: Deploy a full-stack application to GCP; Set up Cloud Build for CI/CD; Create monitoring dashboard; Configure alerts for application; Implement secret management.
TEXTBOOKS
Gene Kim, Jez Humble, Patrick Debois, John Willis, "The DevOps Handbook", 2nd Edition, IT Revolution Press, 2021
Nigel Poulton, "Docker Deep Dive", Updated Edition, 2020
Dan Sullivan, "Official Google Cloud Certified Professional Cloud Architect Study Guide", Wiley, 2019

[bookmark: DACSE206__CAPSTONE_PROJECT_2]DACSE206: CAPSTONE PROJECT 2
Diploma in Advanced Computer Science & Engineering
Acharya Nagarjuna University – Distance Education Program
Course Code: DACSE206
Course Title: Capstone Project 2
Credits: 6
Semester: 2
Prerequisites: All Semester 1 courses, DACSE201, DACSE203, DACSE205 (Co-requisites)
COURSE OBJECTIVES
To provide industry-level project experience with enterprise technologies
To integrate Spring Boot/Flask, databases, and cloud deployment
To implement DevOps practices including CI/CD and containerization
To develop skills in building production-ready applications
To prepare students for real-world software development roles
COURSE OUTCOMES (COs)
Upon completion of this course, students will be able to:
	CO
	Description
	Bloom's Level

	CO1
	Design and develop enterprise-grade applications
	Create

	CO2
	Implement RESTful APIs with proper architecture
	Create

	CO3
	Integrate applications with SQL and NoSQL databases
	Apply

	CO4
	Deploy applications using containerization and cloud platforms
	Apply

	CO5
	Implement CI/CD pipelines for automated deployment
	Create

PROJECT GUIDELINES
Project Scope
The Capstone Project 2 is a comprehensive industry-grade project that integrates Advanced Programming (Spring Boot / Flask), Enterprise Data Sources (MySQL, MongoDB, Redis), and DevOps Practices (Docker, CI/CD, Cloud Deployment). Students work in teams of 3-4 members with mentorship from industry experts.
Suggested Project Categories
E-Commerce Platform: User authentication (JWT) – Product catalog with search – Shopping cart and checkout – Order management – Payment gateway integration (mock) – Admin dashboard.
Learning Management System (LMS): User roles (Admin, Instructor, Student) – Course management – Content delivery – Quizzes and assessments – Progress tracking – Certificates generation.
Healthcare Management System: Patient registration – Doctor scheduling – Medical records – Prescription management – Lab results tracking – Notification system.
Project Management Tool: User and team management – Project creation – Task management (Kanban) – Time tracking – Reports and analytics.
Food Delivery Platform: Restaurant and menu management – Order placement and tracking – Delivery management – Payment processing – Reviews and ratings.
PROJECT PHASES
Phase 1: Project Initiation – Team formation – Project selection – Technology stack finalization.
Phase 2: Requirements Engineering – Stakeholder analysis – User story creation – Product backlog preparation.
Phase 3: System Design – Architecture design – Database design – API design – Security planning.
Phase 4: Sprint 1 - Foundation – Development environment setup – CI/CD pipeline configuration – Core entity implementation – Basic API endpoints.
Phase 5: Sprint 2 - Core Features – Feature implementation – Database integration – Business logic development – Unit testing.
Phase 6: Sprint 3 - Advanced Features – Additional features – Performance optimization – Security implementation – Integration testing.
Phase 7: Deployment and DevOps – Container optimization – Cloud deployment – Monitoring setup – Documentation finalization.
Phase 8: Final Presentation – Live demonstration – Project report – Complete source code.
TECHNICAL REQUIREMENTS
Backend: Spring Boot 3.x OR Flask 2.x/3.x – RESTful API with proper HTTP methods – JWT-based authentication – Input validation – Swagger/OpenAPI documentation – Unit tests with >70% coverage.
Database: MySQL/PostgreSQL as primary database – MongoDB for specific use cases – Redis for caching – Database migrations.
DevOps: Git with proper branching strategy – Docker with multi-stage builds – Docker Compose for local development – GitHub Actions with automated tests – Cloud deployment (AWS/Azure/GCP).
INDUSTRY MENTORSHIP
Each project team will be assigned an industry mentor who will provide guidance on best practices, review code and architecture, share real-world insights, and participate in final evaluation.
TEXTBOOKS
Craig Walls, "Spring in Action", Manning Publications, 2022
Gene Kim, "The DevOps Handbook", IT Revolution Press, 2021

