DIPLOMA IN GEN AI ENGINEERING

Distance Education Program

Acharya Nagarjuna University

COMPLETE SYLLABUS

[bookmark: DIPLOMA_IN_GEN_AI_ENGINEERING]DIPLOMA IN GEN AI ENGINEERING
Distance Education Program
Acharya Nagarjuna University
PROGRAM OVERVIEW
Program Name: Diploma in Gen AI Engineering
Mode: Distance Education
Duration: 1 Year (2 Semesters)
Total Credits: 35 Credits
Affiliated University: Acharya Nagarjuna University
OBJECTIVE OF THE DIPLOMA
The primary goal of the Diploma in Gen AI Engineering is to provide comprehensive training in Large Language Models (LLMs), prompt engineering, AI agent development, and production GenAI systems. Students learn to build, deploy, and manage GenAI applications using industry-standard tools and frameworks.
PROGRAM LEARNING OUTCOMES (PLOs)
Upon successful completion of this diploma, learners will be able to:
Understand Large Language Models and their applications
Master prompt engineering techniques for optimal LLM performance
Build AI agents using LangChain and CrewAI frameworks
Implement RAG (Retrieval-Augmented Generation) systems
Deploy and manage production GenAI applications
Integrate LLMs with applications using APIs and frameworks
Work collaboratively on real-world GenAI projects
SEMESTER-WISE COURSE STRUCTURE
SEMESTER 1: FOUNDATION & LLM FUNDAMENTALS
	S.No
	Course Code
	Course Title
	Credits

	1
	DAGE101
	Introduction to Gen AI & LLMs
	3

	2
	DAGE102
	Introduction to Gen AI & LLMs Lab
	2

	3
	DAGE103
	Prompt Engineering & Model Fine-tuning
	3

	4
	DAGE104
	Prompt Engineering & Model Fine-tuning Lab
	2

	5
	DAGE105
	LLM APIs & Local Model Setup
	3

	6
	DAGE106
	Capstone Project 1
	3

	
	
	SEMESTER 1 TOTAL
	16

SEMESTER 2: ADVANCED GEN AI & PRODUCTION SYSTEMS
	S.No
	Course Code
	Course Title
	Credits

	1
	DAGE201
	Vector Databases & RAG Systems
	3

	2
	DAGE202
	Vector Databases & RAG Systems Lab
	2

	3
	DAGE203
	AI Agent Development with LangChain & CrewAI
	3

	4
	DAGE204
	AI Agent Development Lab
	2

	5
	DAGE205
	Production GenAI Systems & MCP
	3

	6
	DAGE206
	Capstone Project 2
	6

	
	
	SEMESTER 2 TOTAL
	19

COURSE DESCRIPTIONS
SEMESTER 1 COURSES
DAGE101: Introduction to Gen AI & LLMs – 3 Credits
This course introduces Generative AI concepts, Large Language Models, and their applications. Students learn about different LLM architectures, model families, and how to interact with LLMs.
DAGE102: Introduction to Gen AI & LLMs Lab – 2 Credits
Hands-on laboratory course complementing DAGE101. Students interact with various LLMs, test different models, and build basic GenAI applications.
DAGE103: Prompt Engineering & Model Fine-tuning – 3 Credits
Comprehensive study of prompt engineering techniques, few-shot learning, chain-of-thought prompting, and fine-tuning LLMs for specific tasks.
DAGE104: Prompt Engineering & Model Fine-tuning Lab – 2 Credits
Laboratory course for implementing prompt engineering techniques, testing prompts, and fine-tuning models for specific use cases.
DAGE105: LLM APIs & Local Model Setup – 3 Credits
Introduction to LLM APIs (OpenAI, Anthropic), setting up local models (Ollama), API integration, and building applications with LLMs.
DAGE106: Capstone Project 1 – 3 Credits
Mini-project applying Semester 1 concepts. Students build a GenAI application using prompts, APIs, and local models.
SEMESTER 2 COURSES
DAGE201: Vector Databases & RAG Systems – 3 Credits
Deep dive into vector databases, embeddings, semantic search, and building Retrieval-Augmented Generation (RAG) systems for enhanced LLM applications.
DAGE202: Vector Databases & RAG Systems Lab – 2 Credits
Hands-on implementation of vector databases, embedding generation, and building complete RAG systems.
DAGE203: AI Agent Development with LangChain & CrewAI – 3 Credits
Comprehensive coverage of building AI agents using LangChain framework, CrewAI for multi-agent systems, and agent orchestration.
DAGE204: AI Agent Development Lab – 2 Credits
Practical implementation of AI agents, multi-agent systems, and agent workflows using LangChain and CrewAI.
DAGE205: Production GenAI Systems & MCP – 3 Credits
Modern practices for deploying GenAI systems, Model Context Protocol (MCP), monitoring, evaluation, and production best practices.
DAGE206: Capstone Project 2 – 6 Credits
Comprehensive industry-grade project integrating all Semester 2 concepts. Students develop a complete GenAI application with RAG, agents, and production deployment.
KEY TECHNOLOGIES COVERED
Semester 1
LLMs: GPT, Claude, Llama, Mistral | Prompt Engineering: Techniques, Templates, Chain-of-Thought | APIs: OpenAI, Anthropic | Local Models: Ollama | Fine-tuning: LoRA, QLoRA
Semester 2
Vector DBs: Pinecone, Chroma, Weaviate, FAISS | RAG: LangChain RAG, Retrieval Patterns | Agents: LangChain Agents, CrewAI | MCP: Model Context Protocol | Production: Monitoring, Evaluation, Deployment

[bookmark: DAGE101__INTRODUCTION_TO_GEN_AI___LLMs]DAGE101: INTRODUCTION TO GEN AI & LLMs
Diploma in Gen AI Engineering
Acharya Nagarjuna University – Distance Education Program
Course Code: DAGE101
Course Title: Introduction to Gen AI & LLMs
Credits: 3
Semester: 1
Prerequisites: Basic Programming Knowledge (Python)
COURSE OBJECTIVES
To introduce Generative AI concepts and applications
To understand Large Language Models (LLMs) and their architecture
To learn about different LLM families and their characteristics
To understand how LLMs work and their capabilities
To explore LLM use cases and applications
COURSE OUTCOMES (COs)
Upon completion of this course, students will be able to:
	CO
	Description
	Bloom's Level

	CO1
	Explain Gen AI and LLM concepts
	Understand

	CO2
	Compare different LLM models and their use cases
	Analyze

	CO3
	Interact with LLMs through APIs
	Apply

	CO4
	Identify appropriate LLMs for specific tasks
	Evaluate

	CO5
	Understand LLM limitations and ethical considerations
	Understand

DETAILED SYLLABUS
UNIT I: INTRODUCTION TO GENERATIVE AI
What is Generative AI? – Definition and Concepts – Generative vs Discriminative Models – History and Evolution of Gen AI – Applications of Generative AI: Text Generation, Image Generation, Code Generation, Audio Generation.
Large Language Models Overview – What are LLMs? – How LLMs Work: Transformer Architecture Basics – Training Process: Pre-training, Fine-tuning – Tokenization and Embeddings – Context Windows and Attention Mechanisms.
LLM Capabilities and Limitations – What LLMs Can Do: Text Completion, Question Answering, Translation, Summarization – LLM Limitations: Hallucinations, Context Limits, Bias – When to Use LLMs – When Not to Use LLMs.
Illustrative Problems: Identify Gen AI use cases; Compare different Gen AI applications; Understand LLM capabilities; Recognize LLM limitations; Choose appropriate use cases.
UNIT II: LLM MODEL FAMILIES
OpenAI Models – GPT-3.5, GPT-4 – Model Characteristics – Use Cases – API Access – Pricing and Limitations.
Anthropic Models – Claude Models – Claude Characteristics – Use Cases – API Access – Comparison with GPT.
Open Source Models – Llama Models (Meta) – Mistral Models – Model Characteristics – Local Deployment – Fine-tuning Capabilities.
Other Model Families – Google Models: Gemini, PaLM – Cohere Models – Specialized Models: Code Models, Multimodal Models – Model Selection Criteria.
Illustrative Problems: Compare different LLM models; Select appropriate model for use case; Understand model capabilities; Evaluate model trade-offs; Choose between proprietary and open-source models.
UNIT III: TRANSFORMER ARCHITECTURE BASICS
Transformer Architecture Overview – Attention Mechanism – Self-Attention – Multi-Head Attention – Positional Encoding – Encoder-Decoder Architecture.
How LLMs Generate Text – Autoregressive Generation – Sampling Strategies: Greedy, Temperature, Top-k, Top-p – Token Prediction – Generation Parameters.
Model Parameters and Scale – Parameter Counts – Model Sizes – Scaling Laws – Compute Requirements – Model Efficiency.
Illustrative Problems: Understand attention mechanism; Explain text generation process; Adjust generation parameters; Compare model architectures; Understand scaling concepts.
UNIT IV: INTERACTING WITH LLMs
LLM APIs Overview – OpenAI API – Anthropic API – API Authentication – API Rate Limits – Cost Management.
Basic API Usage – Making API Calls – Prompt Structure – Response Handling – Error Handling – Best Practices.
Python Libraries for LLMs – OpenAI Python Library – Anthropic Python Library – LangChain Basics (Introduction) – Simple LLM Applications.
Illustrative Problems: Make API calls to LLMs; Handle API responses; Build simple LLM applications; Manage API costs; Implement error handling.
UNIT V: LLM APPLICATIONS AND USE CASES
Text Generation Applications – Content Creation – Creative Writing – Code Generation – Documentation Generation – Use Case Examples.
Question Answering Systems – Building Q&A Systems – Context Management – Answer Quality – Evaluation Metrics.
Translation and Summarization – Machine Translation – Text Summarization – Extractive vs Abstractive Summarization – Implementation Approaches.
Ethical Considerations – Bias in LLMs – Privacy Concerns – Misinformation – Responsible AI – Best Practices.
Illustrative Problems: Build text generation application; Create Q&A system; Implement summarization; Address ethical concerns; Evaluate application quality.
TEXTBOOKS
Jay Alammar, "The Illustrated Transformer", Blog Post Series
Tom Taulli, "Artificial Intelligence Basics", Apress, 2019
OpenAI Documentation and Research Papers

[bookmark: DAGE102__INTRODUCTION_TO_GEN_AI___LLMs_L]DAGE102: INTRODUCTION TO GEN AI & LLMs LAB
Diploma in Gen AI Engineering
Acharya Nagarjuna University – Distance Education Program
Course Code: DAGE102
Course Title: Introduction to Gen AI & LLMs Lab
Credits: 2
Semester: 1
Prerequisites: DAGE101 (Co-requisite)
COURSE OBJECTIVES
To practice interacting with different LLMs
To build basic GenAI applications
To experiment with LLM capabilities
To understand practical LLM usage
COURSE OUTCOMES (COs)
Upon completion of this course, students will be able to:
	CO
	Description
	Bloom's Level

	CO1
	Interact with LLM APIs
	Apply

	CO2
	Build basic GenAI applications
	Create

	CO3
	Experiment with different models
	Apply

	CO4
	Handle API responses and errors
	Apply

	CO5
	Evaluate LLM outputs
	Analyze

LIST OF EXPERIMENTS
Experiment 1: LLM API Setup – Set up OpenAI/Anthropic accounts – Install Python libraries – Make first API call – Handle authentication.
Experiment 2: Basic Text Generation – Generate text with different prompts – Experiment with parameters – Compare outputs – Handle responses.
Experiment 3: Question Answering – Build Q&A system – Provide context – Evaluate answers – Improve responses.
Experiment 4: Text Summarization – Summarize long texts – Compare extractive vs abstractive – Adjust summary length – Evaluate quality.
Experiment 5: Code Generation – Generate code snippets – Explain code – Debug generated code – Refine prompts.
Experiment 6: Creative Writing – Generate stories – Create content – Adjust creativity – Control output style.
Experiment 7: Translation Tasks – Translate between languages – Handle multiple languages – Evaluate translation quality – Compare models.
Experiment 8: Model Comparison – Compare GPT vs Claude – Test different models – Evaluate strengths – Choose appropriate model.
Experiment 9: Error Handling – Handle API errors – Manage rate limits – Implement retries – Error recovery.
Experiment 10: Cost Management – Track API usage – Optimize costs – Implement caching – Best practices.
Experiment 11: Simple Chat Application – Build chat interface – Manage conversation history – Handle context – Improve responses.
Experiment 12: Complete GenAI Application – Build end-to-end application – Integrate multiple features – Deploy application – Document usage.
TEXTBOOKS
OpenAI API Documentation
Anthropic API Documentation

[bookmark: DAGE103__PROMPT_ENGINEERING___MODEL_FINE]DAGE103: PROMPT ENGINEERING & MODEL FINE-TUNING
Diploma in Gen AI Engineering
Acharya Nagarjuna University – Distance Education Program
Course Code: DAGE103
Course Title: Prompt Engineering & Model Fine-tuning
Credits: 3
Semester: 1
Prerequisites: DAGE101 – Introduction to Gen AI & LLMs
COURSE OBJECTIVES
To master prompt engineering techniques
To learn advanced prompting strategies
To understand model fine-tuning concepts
To implement few-shot learning and chain-of-thought prompting
To fine-tune LLMs for specific tasks
COURSE OUTCOMES (COs)
Upon completion of this course, students will be able to:
	CO
	Description
	Bloom's Level

	CO1
	Design effective prompts for LLMs
	Create

	CO2
	Apply advanced prompting techniques
	Apply

	CO3
	Implement few-shot learning
	Apply

	CO4
	Fine-tune LLMs for specific tasks
	Apply

	CO5
	Optimize prompt performance
	Analyze

DETAILED SYLLABUS
UNIT I: PROMPT ENGINEERING FUNDAMENTALS
Introduction to Prompt Engineering – What is Prompt Engineering? – Why Prompt Engineering Matters – Elements of a Good Prompt – Prompt Structure: Instruction, Context, Examples, Output Format.
Basic Prompting Techniques – Zero-Shot Prompting – One-Shot Prompting – Few-Shot Prompting – Prompt Templates – Prompt Variables – Iterative Prompt Refinement.
Prompt Design Principles – Clarity and Specificity – Providing Context – Setting Constraints – Defining Output Format – Examples and Demonstrations – Common Mistakes.
Illustrative Problems: Write effective zero-shot prompts; Design few-shot prompts; Create prompt templates; Refine prompts iteratively; Avoid common prompt mistakes.
UNIT II: ADVANCED PROMPTING TECHNIQUES
Chain-of-Thought Prompting – What is Chain-of-Thought? – Step-by-Step Reasoning – Implementing CoT – CoT for Complex Problems – CoT Variations.
Role-Based Prompting – Assigning Roles to LLMs – System Prompts – Persona-Based Prompts – Multi-Agent Scenarios – Role Consistency.
Prompt Chaining – Breaking Complex Tasks into Steps – Sequential Prompts – Conditional Prompting – Prompt Pipelines – Managing State Across Prompts.
Illustrative Problems: Implement chain-of-thought prompting; Use role-based prompts; Create prompt chains; Build prompt pipelines; Manage complex prompts.
UNIT III: FEW-SHOT LEARNING AND IN-CONTEXT LEARNING
Few-Shot Learning Concepts – What is Few-Shot Learning? – In-Context Learning – Example Selection – Example Ordering – Few-Shot vs Fine-tuning.
Implementing Few-Shot Learning – Selecting Good Examples – Formatting Examples – Providing Diverse Examples – Handling Edge Cases – Evaluating Few-Shot Performance.
Advanced In-Context Learning – Dynamic Example Selection – Adaptive Few-Shot – Meta-Learning Concepts – Prompt Compression Techniques.
Illustrative Problems: Implement few-shot learning; Select effective examples; Format examples properly; Evaluate few-shot performance; Optimize example selection.
UNIT IV: MODEL FINE-TUNING FUNDAMENTALS
Introduction to Fine-tuning – What is Fine-tuning? – When to Fine-tune vs Prompt – Fine-tuning Process Overview – Data Requirements – Fine-tuning vs Pre-training.
Fine-tuning Methods – Full Fine-tuning – Parameter-Efficient Fine-tuning (PEFT) – LoRA (Low-Rank Adaptation) – QLoRA (Quantized LoRA) – Adapter Methods.
Fine-tuning Workflow – Data Preparation – Data Formatting – Training Configuration – Hyperparameter Tuning – Evaluation and Validation.
Illustrative Problems: Prepare data for fine-tuning; Choose fine-tuning method; Configure training parameters; Evaluate fine-tuned models; Compare fine-tuning approaches.
UNIT V: PRACTICAL FINE-TUNING AND OPTIMIZATION
Fine-tuning Open Source Models – Fine-tuning Llama Models – Fine-tuning Mistral Models – Using Hugging Face Transformers – Training Infrastructure – Cost Considerations.
Fine-tuning Best Practices – Data Quality – Data Augmentation – Overfitting Prevention – Evaluation Metrics – Model Selection – Deployment Considerations.
Prompt Optimization – A/B Testing Prompts – Measuring Prompt Performance – Cost Optimization – Latency Optimization – Quality vs Cost Trade-offs.
Illustrative Problems: Fine-tune open-source model; Implement best practices; Optimize prompts; Measure performance; Balance quality and cost.
TEXTBOOKS
OpenAI, "GPT Best Practices", OpenAI Documentation
Anthropic, "Prompt Engineering Guide", Anthropic Documentation
Hugging Face, "Fine-tuning Language Models", Hugging Face Course

[bookmark: DAGE104__PROMPT_ENGINEERING___MODEL_FINE]DAGE104: PROMPT ENGINEERING & MODEL FINE-TUNING LAB
Diploma in Gen AI Engineering
Acharya Nagarjuna University – Distance Education Program
Course Code: DAGE104
Course Title: Prompt Engineering & Model Fine-tuning Lab
Credits: 2
Semester: 1
Prerequisites: DAGE103 (Co-requisite)
COURSE OBJECTIVES
To practice prompt engineering techniques
To implement advanced prompting strategies
To fine-tune models for specific tasks
To optimize prompt performance
COURSE OUTCOMES (COs)
Upon completion of this course, students will be able to:
	CO
	Description
	Bloom's Level

	CO1
	Design and test prompts
	Create

	CO2
	Implement advanced prompting techniques
	Apply

	CO3
	Fine-tune LLM models
	Apply

	CO4
	Optimize prompt performance
	Analyze

	CO5
	Evaluate prompt effectiveness
	Analyze

LIST OF EXPERIMENTS
Experiment 1: Basic Prompt Engineering – Write zero-shot prompts – Test prompt variations – Refine prompts – Measure performance.
Experiment 2: Few-Shot Learning – Implement few-shot prompts – Select examples – Format examples – Evaluate performance.
Experiment 3: Chain-of-Thought Prompting – Implement CoT prompts – Test reasoning – Compare with standard prompts – Evaluate results.
Experiment 4: Role-Based Prompting – Assign roles to LLMs – Create system prompts – Test persona consistency – Build multi-role scenarios.
Experiment 5: Prompt Chaining – Break tasks into steps – Create prompt chains – Manage state – Build pipelines.
Experiment 6: Prompt Templates – Create reusable templates – Use template variables – Build template library – Document templates.
Experiment 7: Data Preparation for Fine-tuning – Prepare training data – Format data – Validate data quality – Split datasets.
Experiment 8: Fine-tuning Setup – Set up fine-tuning environment – Configure training – Prepare infrastructure – Start training.
Experiment 9: LoRA Fine-tuning – Implement LoRA – Configure LoRA parameters – Train model – Evaluate results.
Experiment 10: Prompt Optimization – A/B test prompts – Measure performance – Optimize costs – Balance quality and cost.
Experiment 11: Fine-tuned Model Evaluation – Evaluate fine-tuned model – Compare with base model – Test on validation set – Measure improvements.
Experiment 12: Complete Prompt Engineering Project – Build application with optimized prompts – Fine-tune model if needed – Deploy solution – Document approach.
TEXTBOOKS
OpenAI, "GPT Best Practices", OpenAI Documentation
Hugging Face, "Fine-tuning Language Models", Hugging Face Course

[bookmark: DAGE105__LLM_APIs___LOCAL_MODEL_SETUP]DAGE105: LLM APIs & LOCAL MODEL SETUP
Diploma in Gen AI Engineering
Acharya Nagarjuna University – Distance Education Program
Course Code: DAGE105
Course Title: LLM APIs & Local Model Setup
Credits: 3
Semester: 1
Prerequisites: DAGE101 – Introduction to Gen AI & LLMs
COURSE OBJECTIVES
To master LLM API integration
To set up and run local LLM models
To understand API vs local model trade-offs
To build applications using both approaches
To optimize API usage and local model performance
COURSE OUTCOMES (COs)
Upon completion of this course, students will be able to:
	CO
	Description
	Bloom's Level

	CO1
	Integrate LLM APIs into applications
	Apply

	CO2
	Set up and run local LLM models
	Apply

	CO3
	Choose between API and local models
	Evaluate

	CO4
	Optimize API usage and costs
	Analyze

	CO5
	Build production-ready LLM applications
	Create

DETAILED SYLLABUS
UNIT I: LLM API INTEGRATION
OpenAI API Deep Dive – API Authentication – API Endpoints – Chat Completions API – Completions API – Embeddings API – Function Calling – Streaming Responses.
Anthropic API – Claude API Overview – API Authentication – Message API – Streaming – Tool Use – API Best Practices.
API Integration Patterns – Synchronous vs Asynchronous Calls – Error Handling – Retry Logic – Rate Limiting – Cost Management – Response Caching.
Illustrative Problems: Integrate OpenAI API; Handle API errors; Implement retry logic; Manage API costs; Cache API responses.
UNIT II: LOCAL MODEL SETUP WITH OLLAMA
Introduction to Ollama – What is Ollama? – Why Use Local Models? – Ollama Installation – Ollama Architecture – Supported Models.
Setting Up Ollama – Installation on Different Platforms – Downloading Models – Model Management – Running Models – Ollama CLI Usage.
Ollama API – REST API Endpoints – Python Integration – Streaming Responses – Model Configuration – Performance Tuning.
Illustrative Problems: Install and configure Ollama; Download and run models; Use Ollama API; Integrate with Python; Optimize performance.
UNIT III: WORKING WITH LOCAL MODELS
Available Local Models – Llama Models – Mistral Models – Code Models – Multimodal Models – Model Selection Guide.
Model Configuration – Context Window Settings – Temperature and Sampling – GPU vs CPU – Memory Management – Model Quantization.
Performance Optimization – Hardware Requirements – GPU Acceleration – Model Quantization – Batch Processing – Optimization Techniques.
Illustrative Problems: Select appropriate local model; Configure model parameters; Optimize performance; Handle memory constraints; Compare model performance.
UNIT IV: API VS LOCAL MODELS
Trade-offs Analysis – Cost Comparison – Latency Comparison – Privacy Considerations – Customization – Scalability – Use Case Selection.
Hybrid Approaches – Using APIs for Some Tasks – Using Local Models for Others – Fallback Strategies – Cost Optimization – Performance Optimization.
Migration Strategies – Moving from API to Local – Moving from Local to API – Hybrid Deployment – Decision Framework.
Illustrative Problems: Compare API vs local models; Choose appropriate approach; Implement hybrid solution; Optimize costs; Plan migration.
UNIT V: BUILDING PRODUCTION APPLICATIONS
Application Architecture – Designing LLM Applications – API Integration Patterns – Local Model Integration – Error Handling – Monitoring.
Best Practices – Security Considerations – API Key Management – Rate Limiting – Cost Monitoring – Performance Monitoring – Logging and Debugging.
Deployment Strategies – Deploying API-Based Applications – Deploying Local Model Applications – Containerization – Cloud Deployment – Edge Deployment.
Illustrative Problems: Design application architecture; Implement security best practices; Deploy applications; Monitor performance; Handle production issues.
TEXTBOOKS
OpenAI API Documentation
Anthropic API Documentation
Ollama Documentation

[bookmark: DAGE106__CAPSTONE_PROJECT_1]DAGE106: CAPSTONE PROJECT 1
Diploma in Gen AI Engineering
Acharya Nagarjuna University – Distance Education Program
Course Code: DAGE106
Course Title: Capstone Project 1
Credits: 3
Semester: 1
Prerequisites: DAGE101, DAGE103, DAGE105
COURSE OBJECTIVES
To apply Semester 1 concepts in a real-world GenAI project
To demonstrate mastery of prompt engineering and LLM integration
To build a complete GenAI application
To practice project planning and execution
COURSE OUTCOMES (COs)
Upon completion of this course, students will be able to:
	CO
	Description
	Bloom's Level

	CO1
	Build complete GenAI application
	Create

	CO2
	Apply prompt engineering techniques
	Apply

	CO3
	Integrate LLM APIs or local models
	Apply

	CO4
	Optimize application performance
	Analyze

	CO5
	Document and present GenAI solutions
	Create

PROJECT GUIDELINES
Project Scope
Students will build a GenAI application demonstrating: LLM Integration (API or Local) – Prompt Engineering – Application Development – User Interface – Testing and Optimization.
Suggested Project Areas
Content Generation Tool: Build tool for content creation – Implement prompt templates – Generate various content types – User-friendly interface.
Code Assistant: Create code generation tool – Explain code – Debug assistance – Multiple language support.
Chat Application: Build conversational AI – Manage conversation history – Context handling – Multiple model support.
Documentation Generator: Generate documentation from code – Extract information – Format output – Multiple formats.
Creative Writing Assistant: Assist with writing – Story generation – Character development – Plot suggestions.
Deliverables
Project Proposal – Application Implementation – Prompt Library – Testing Report – User Documentation – Final Presentation.
TEXTBOOKS
OpenAI API Documentation
Anthropic API Documentation

[bookmark: DAGE201__VECTOR_DATABASES___RAG_SYSTEMS]DAGE201: VECTOR DATABASES & RAG SYSTEMS
Diploma in Gen AI Engineering
Acharya Nagarjuna University – Distance Education Program
Course Code: DAGE201
Course Title: Vector Databases & RAG Systems
Credits: 3
Semester: 2
Prerequisites: DAGE101, DAGE103, DAGE105
COURSE OBJECTIVES
To understand vector databases and embeddings
To master semantic search and similarity matching
To build Retrieval-Augmented Generation (RAG) systems
To implement document processing and chunking
To optimize RAG system performance
COURSE OUTCOMES (COs)
Upon completion of this course, students will be able to:
	CO
	Description
	Bloom's Level

	CO1
	Design and implement vector databases
	Create

	CO2
	Build RAG systems for enhanced LLM applications
	Create

	CO3
	Implement semantic search and retrieval
	Apply

	CO4
	Optimize RAG system performance
	Analyze

	CO5
	Integrate RAG with LLM applications
	Apply

DETAILED SYLLABUS
UNIT I: EMBEDDINGS AND VECTOR REPRESENTATIONS
Introduction to Embeddings – What are Embeddings? – Word Embeddings vs Sentence Embeddings – Embedding Models – Embedding Dimensions – Embedding Quality.
Generating Embeddings – Using OpenAI Embeddings API – Using Open Source Embedding Models – Sentence Transformers – Embedding Generation Best Practices – Embedding Storage.
Vector Similarity – Cosine Similarity – Euclidean Distance – Dot Product – Similarity Metrics Comparison – Choosing Similarity Metrics.
Illustrative Problems: Generate embeddings for text; Calculate vector similarity; Compare embedding models; Store embeddings efficiently; Measure embedding quality.
UNIT II: VECTOR DATABASES
Introduction to Vector Databases – What are Vector Databases? – Vector Database vs Traditional Database – Use Cases for Vector Databases – Vector Database Architecture.
Pinecone – Pinecone Overview – Setting Up Pinecone – Creating Indexes – Inserting Vectors – Querying Vectors – Pinecone Best Practices.
Chroma – Chroma Overview – Installation and Setup – Creating Collections – Adding Documents – Querying – Chroma Features.
Other Vector Databases – Weaviate – FAISS (Facebook AI Similarity Search) – Qdrant – Vector Database Comparison – Choosing Vector Database.
Illustrative Problems: Set up vector database; Insert and query vectors; Compare vector databases; Optimize vector operations; Choose appropriate database.
UNIT III: RETRIEVAL-AUGMENTED GENERATION (RAG)
RAG Architecture – What is RAG? – Why RAG? – RAG Components: Retrieval, Augmentation, Generation – RAG Workflow – RAG vs Fine-tuning.
Building RAG Systems – Document Processing – Text Chunking Strategies – Embedding Generation – Vector Storage – Retrieval Process – Context Assembly.
LangChain RAG – LangChain RAG Components – Document Loaders – Text Splitters – Vector Stores – Retrievers – RAG Chains.
Illustrative Problems: Build basic RAG system; Process documents; Implement retrieval; Integrate with LLM; Optimize RAG pipeline.
UNIT IV: ADVANCED RAG TECHNIQUES
Document Processing – PDF Processing – Web Scraping – Document Parsing – Text Extraction – Metadata Extraction.
Chunking Strategies – Fixed-size Chunking – Semantic Chunking – Recursive Chunking – Overlapping Chunks – Chunk Size Optimization.
Retrieval Optimization – Hybrid Search: Keyword + Semantic – Re-ranking Results – Retrieval Strategies – Context Window Management – Retrieval Quality.
Illustrative Problems: Process various document types; Implement advanced chunking; Optimize retrieval; Improve RAG quality; Handle different document formats.
UNIT V: RAG SYSTEM OPTIMIZATION AND EVALUATION
RAG Performance Optimization – Reducing Latency – Improving Accuracy – Cost Optimization – Caching Strategies – Batch Processing.
RAG Evaluation – Retrieval Metrics – Generation Quality – End-to-End Evaluation – A/B Testing RAG Systems – Evaluation Frameworks.
Production RAG Systems – Scalability Considerations – Monitoring RAG Systems – Error Handling – Version Control – Best Practices.
Illustrative Problems: Optimize RAG performance; Evaluate RAG systems; Monitor production RAG; Handle errors; Scale RAG applications.
TEXTBOOKS
LangChain Documentation, "RAG Tutorials"
Pinecone Documentation
Harrison Chase, "LangChain for LLM Application Development", DeepLearning.AI

[bookmark: DAGE202__VECTOR_DATABASES___RAG_SYSTEMS_]DAGE202: VECTOR DATABASES & RAG SYSTEMS LAB
Diploma in Gen AI Engineering
Acharya Nagarjuna University – Distance Education Program
Course Code: DAGE202
Course Title: Vector Databases & RAG Systems Lab
Credits: 2
Semester: 2
Prerequisites: DAGE201 (Co-requisite)
COURSE OBJECTIVES
To implement vector databases
To build RAG systems
To practice semantic search
To optimize RAG performance
COURSE OUTCOMES (COs)
Upon completion of this course, students will be able to:
	CO
	Description
	Bloom's Level

	CO1
	Set up and use vector databases
	Apply

	CO2
	Build complete RAG systems
	Create

	CO3
	Implement semantic search
	Apply

	CO4
	Optimize RAG performance
	Analyze

	CO5
	Evaluate RAG systems
	Analyze

LIST OF EXPERIMENTS
Experiment 1: Embedding Generation – Generate embeddings – Compare embedding models – Store embeddings – Calculate similarity.
Experiment 2: Vector Database Setup – Set up Pinecone/Chroma – Create indexes – Insert vectors – Query vectors.
Experiment 3: Document Processing – Process PDFs – Extract text – Parse documents – Extract metadata.
Experiment 4: Text Chunking – Implement chunking strategies – Test different approaches – Optimize chunk size – Handle overlaps.
Experiment 5: Basic RAG System – Build RAG pipeline – Process documents – Generate embeddings – Retrieve and generate.
Experiment 6: LangChain RAG – Use LangChain components – Build RAG chain – Integrate retrievers – Test RAG system.
Experiment 7: Advanced Chunking – Semantic chunking – Recursive chunking – Overlapping strategies – Optimize chunking.
Experiment 8: Retrieval Optimization – Hybrid search – Re-ranking – Multiple retrieval strategies – Improve accuracy.
Experiment 9: RAG Evaluation – Measure retrieval quality – Evaluate generation – End-to-end testing – Compare approaches.
Experiment 10: Performance Optimization – Reduce latency – Implement caching – Optimize costs – Batch processing.
Experiment 11: Production RAG – Handle errors – Monitor performance – Scale system – Deploy RAG.
Experiment 12: Complete RAG Project – Build production RAG system – Optimize performance – Deploy and monitor – Document solution.
TEXTBOOKS
LangChain Documentation
Pinecone Documentation

[bookmark: DAGE203__AI_AGENT_DEVELOPMENT_WITH_LANGC]DAGE203: AI AGENT DEVELOPMENT WITH LANGCHAIN & CREWAI
Diploma in Gen AI Engineering
Acharya Nagarjuna University – Distance Education Program
Course Code: DAGE203
Course Title: AI Agent Development with LangChain & CrewAI
Credits: 3
Semester: 2
Prerequisites: DAGE201 – Vector Databases & RAG Systems
COURSE OBJECTIVES
To understand AI agent concepts and architecture
To master LangChain framework for agent development
To learn CrewAI for multi-agent systems
To build autonomous AI agents
To implement agent workflows and orchestration
COURSE OUTCOMES (COs)
Upon completion of this course, students will be able to:
	CO
	Description
	Bloom's Level

	CO1
	Design and implement AI agents
	Create

	CO2
	Build multi-agent systems with CrewAI
	Create

	CO3
	Use LangChain for agent development
	Apply

	CO4
	Orchestrate agent workflows
	Apply

	CO5
	Optimize agent performance
	Analyze

DETAILED SYLLABUS
UNIT I: AI AGENT FUNDAMENTALS
Introduction to AI Agents – What are AI Agents? – Agent vs LLM – Agent Architecture – Agent Components: Tools, Memory, Planning – Types of Agents: ReAct, Plan-and-Execute, Multi-Agent.
Agent Capabilities – Tool Use – Function Calling – Web Search – Code Execution – Database Access – API Integration – Agent Limitations.
Agent Design Patterns – Single Agent Systems – Multi-Agent Systems – Agent Hierarchies – Agent Collaboration – Agent Communication.
Illustrative Problems: Design agent architecture; Choose agent type; Plan agent capabilities; Design agent interactions; Handle agent limitations.
UNIT II: LANGCHAIN AGENT FRAMEWORK
LangChain Overview – What is LangChain? – LangChain Components – Agents Module – Tools Module – Memory Module – Chains Module.
Building Agents with LangChain – Agent Types: Zero-shot, ReAct, Plan-and-Execute – Creating Agents – Agent Tools – Agent Memory – Agent Execution.
LangChain Tools – Built-in Tools – Custom Tools – Tool Wrappers – Tool Selection – Tool Execution – Error Handling.
Illustrative Problems: Create LangChain agent; Add tools to agent; Implement agent memory; Execute agent tasks; Handle agent errors.
UNIT III: ADVANCED LANGCHAIN AGENTS
Agent Orchestration – Complex Agent Workflows – Sequential Agent Execution – Parallel Agent Execution – Conditional Logic – State Management.
Agent Memory Systems – Conversation Memory – Buffer Memory – Summary Memory – Entity Memory – Memory Optimization.
Custom Agent Development – Building Custom Agents – Custom Tools – Custom Chains – Agent Extensions – Best Practices.
Illustrative Problems: Orchestrate agent workflows; Implement memory systems; Build custom agents; Extend agent capabilities; Optimize agent performance.
UNIT IV: CREWAI FOR MULTI-AGENT SYSTEMS
CrewAI Introduction – What is CrewAI? – CrewAI Architecture – Agents in CrewAI – Tasks in CrewAI – Crews in CrewAI – CrewAI vs LangChain.
Building Multi-Agent Systems – Defining Agents – Creating Tasks – Forming Crews – Agent Roles – Task Assignment – Agent Collaboration.
CrewAI Features – Agent Roles and Goals – Task Dependencies – Process Management – Output Parsing – CrewAI Best Practices.
Illustrative Problems: Set up CrewAI; Define agent roles; Create tasks; Form crews; Execute multi-agent workflows; Handle agent collaboration.
UNIT V: PRODUCTION AGENT SYSTEMS
Agent Monitoring and Debugging – Monitoring Agent Execution – Debugging Agents – Logging Agent Actions – Performance Metrics – Error Tracking.
Agent Optimization – Reducing Latency – Cost Optimization – Improving Accuracy – Caching Strategies – Batch Processing.
Deploying Agent Systems – Deployment Strategies – Containerization – Cloud Deployment – API Endpoints – Scaling Agents – Security Considerations.
Illustrative Problems: Monitor agent systems; Debug agent issues; Optimize agent performance; Deploy agents; Scale agent systems; Secure agent deployments.
TEXTBOOKS
Harrison Chase, "LangChain for LLM Application Development", DeepLearning.AI
LangChain Documentation
CrewAI Documentation

[bookmark: DAGE204__AI_AGENT_DEVELOPMENT_LAB]DAGE204: AI AGENT DEVELOPMENT LAB
Diploma in Gen AI Engineering
Acharya Nagarjuna University – Distance Education Program
Course Code: DAGE204
Course Title: AI Agent Development Lab
Credits: 2
Semester: 2
Prerequisites: DAGE203 (Co-requisite)
COURSE OBJECTIVES
To implement AI agents using LangChain
To build multi-agent systems with CrewAI
To practice agent orchestration
To optimize agent performance
COURSE OUTCOMES (COs)
Upon completion of this course, students will be able to:
	CO
	Description
	Bloom's Level

	CO1
	Build LangChain agents
	Create

	CO2
	Implement multi-agent systems
	Create

	CO3
	Orchestrate agent workflows
	Apply

	CO4
	Optimize agent performance
	Analyze

	CO5
	Deploy agent systems
	Apply

LIST OF EXPERIMENTS
Experiment 1: LangChain Agent Basics – Create simple agent – Add tools – Execute tasks – Handle responses.
Experiment 2: Agent Tools – Create custom tools – Integrate tools – Tool selection – Tool execution.
Experiment 3: Agent Memory – Implement conversation memory – Use buffer memory – Summary memory – Memory optimization.
Experiment 4: Agent Orchestration – Build agent workflows – Sequential execution – Parallel execution – Conditional logic.
Experiment 5: CrewAI Setup – Install CrewAI – Define agents – Create tasks – Form crews.
Experiment 6: Multi-Agent Systems – Build multi-agent crew – Define roles – Assign tasks – Execute workflows.
Experiment 7: Agent Collaboration – Implement agent communication – Task dependencies – Agent coordination – Handle conflicts.
Experiment 8: Advanced Agent Features – Custom agents – Agent extensions – Complex workflows – Error handling.
Experiment 9: Agent Monitoring – Monitor agent execution – Log actions – Track performance – Debug issues.
Experiment 10: Agent Optimization – Reduce latency – Optimize costs – Improve accuracy – Implement caching.
Experiment 11: Agent Deployment – Deploy agent system – Create API endpoints – Containerize agents – Scale systems.
Experiment 12: Complete Agent Project – Build production agent system – Integrate multiple agents – Deploy and monitor – Document solution.
TEXTBOOKS
LangChain Documentation
CrewAI Documentation

[bookmark: DAGE205__PRODUCTION_GENAI_SYSTEMS___MCP]DAGE205: PRODUCTION GENAI SYSTEMS & MCP
Diploma in Gen AI Engineering
Acharya Nagarjuna University – Distance Education Program
Course Code: DAGE205
Course Title: Production GenAI Systems & MCP
Credits: 3
Semester: 2
Prerequisites: DAGE201, DAGE203
COURSE OBJECTIVES
To understand production GenAI system requirements
To master Model Context Protocol (MCP)
To implement monitoring and evaluation for GenAI
To deploy and manage production GenAI applications
To ensure reliability and scalability
COURSE OUTCOMES (COs)
Upon completion of this course, students will be able to:
	CO
	Description
	Bloom's Level

	CO1
	Design production GenAI systems
	Create

	CO2
	Implement MCP for model context management
	Apply

	CO3
	Monitor and evaluate GenAI systems
	Apply

	CO4
	Deploy scalable GenAI applications
	Apply

	CO5
	Ensure production reliability
	Analyze

DETAILED SYLLABUS
UNIT I: PRODUCTION GENAI ARCHITECTURE
Production System Requirements – Scalability – Reliability – Performance – Cost Management – Security – Monitoring – Error Handling.
GenAI System Architecture – API Gateway – Load Balancing – Caching Strategies – Rate Limiting – Fallback Mechanisms – Circuit Breakers.
Deployment Patterns – Serverless Deployment – Container Deployment – Kubernetes Deployment – Edge Deployment – Hybrid Deployment.
Illustrative Problems: Design production architecture; Plan scalability; Implement reliability; Handle errors; Optimize costs.
UNIT II: MODEL CONTEXT PROTOCOL (MCP)
Introduction to MCP – What is MCP? – Why MCP? – MCP Architecture – MCP Components – MCP Use Cases.
MCP Implementation – Setting Up MCP – MCP Servers – MCP Clients – Context Management – Model Integration.
MCP Best Practices – Context Organization – Context Retrieval – Context Updates – Performance Optimization – Security Considerations.
Illustrative Problems: Set up MCP; Implement MCP servers; Integrate MCP clients; Manage context; Optimize MCP performance.
UNIT III: MONITORING AND EVALUATION
GenAI Monitoring – Monitoring Metrics – Latency Monitoring – Cost Monitoring – Quality Monitoring – Error Monitoring – User Feedback.
Evaluation Frameworks – Evaluation Metrics – Human Evaluation – Automated Evaluation – A/B Testing – Evaluation Best Practices.
Quality Assurance – Input Validation – Output Validation – Quality Checks – Bias Detection – Safety Checks.
Illustrative Problems: Set up monitoring; Implement evaluation; Measure quality; Detect issues; Improve systems.
UNIT IV: RELIABILITY AND ERROR HANDLING
Error Handling Strategies – Retry Logic – Fallback Mechanisms – Graceful Degradation – Error Recovery – Error Notifications.
Reliability Patterns – Redundancy – Failover – Health Checks – Circuit Breakers – Timeout Handling.
Testing GenAI Systems – Unit Testing – Integration Testing – End-to-End Testing – Load Testing – Test Data Management.
Illustrative Problems: Implement error handling; Build reliability; Test systems; Handle failures; Ensure uptime.
UNIT V: SCALING AND OPTIMIZATION
Scaling Strategies – Horizontal Scaling – Vertical Scaling – Auto-scaling – Load Distribution – Resource Management.
Performance Optimization – Latency Optimization – Throughput Optimization – Cost Optimization – Caching Strategies – Batch Processing.
Production Best Practices – Security Best Practices – Compliance Considerations – Documentation – Version Control – Rollback Strategies.
Illustrative Problems: Scale systems; Optimize performance; Reduce costs; Implement security; Document systems.
TEXTBOOKS
Model Context Protocol Documentation
OpenAI, "Production Best Practices", OpenAI Documentation
Anthropic, "Production Guide", Anthropic Documentation

[bookmark: DAGE206__CAPSTONE_PROJECT_2]DAGE206: CAPSTONE PROJECT 2
Diploma in Gen AI Engineering
Acharya Nagarjuna University – Distance Education Program
Course Code: DAGE206
Course Title: Capstone Project 2
Credits: 6
Semester: 2
Prerequisites: All Semester 2 courses
COURSE OBJECTIVES
To integrate all Semester 2 concepts in a comprehensive GenAI project
To build production-ready GenAI applications
To implement RAG, agents, and MCP
To deploy and manage production GenAI systems
COURSE OUTCOMES (COs)
Upon completion of this course, students will be able to:
	CO
	Description
	Bloom's Level

	CO1
	Design complete GenAI solution
	Create

	CO2
	Implement RAG and agent systems
	Create

	CO3
	Deploy production GenAI applications
	Apply

	CO4
	Monitor and optimize GenAI systems
	Analyze

	CO5
	Ensure production reliability
	Analyze

PROJECT GUIDELINES
Project Scope
Students will develop a complete GenAI application demonstrating: RAG System Implementation – AI Agent Development – MCP Integration – Production Deployment – Monitoring and Evaluation – Documentation.
Suggested Project Areas
Intelligent Document Assistant: Build RAG system for documents – Implement semantic search – Create agent for Q&A – Deploy production system.
Multi-Agent Research System: Build research agents – Implement agent collaboration – Use RAG for context – Deploy agent system.
Enterprise Knowledge Base: Build knowledge base with RAG – Implement search – Create agent interface – Deploy enterprise solution.
AI-Powered Customer Support: Build support agent – Implement RAG for knowledge – Multi-agent coordination – Production deployment.
Code Generation Platform: Build code generation system – Implement RAG for documentation – Create coding agents – Deploy platform.
Deliverables
Project Proposal and Architecture – RAG System Implementation – Agent Development – MCP Integration – Production Deployment – Monitoring Setup – Final Presentation and Demo – Project Documentation.
TEXTBOOKS
LangChain Documentation
CrewAI Documentation
Model Context Protocol Documentation

